Frequency range two antenna array with switches for joining antennas for frequency range one communications

Information

  • Patent Grant
  • 12088013
  • Patent Number
    12,088,013
  • Date Filed
    Thursday, March 17, 2022
    2 years ago
  • Date Issued
    Tuesday, September 10, 2024
    3 months ago
Abstract
Apparatus and methods for wirelessly communicating using antennas are disclosed. In certain embodiments, an antenna system includes a first radio frequency signal conditioning circuit configured to condition a first radio frequency signal of a first frequency, a plurality of second radio frequency signal conditioning circuits configured to condition a plurality of second radio frequency signals of a second frequency that is greater than the first frequency, a plurality of switches operable in a first mode and a second mode, and an antenna array of including a plurality of antenna elements interconnect by the plurality of switches. The antenna array is operable to handle the first radio frequency signal in the first mode, and to handle the plurality of second radio frequency signals in the second mode.
Description
BACKGROUND
Field

Embodiments of the invention relate to electronic systems, and in particular, to radio frequency (RF) electronics.


Description of the Related Technology

Radio frequency (RF) communication systems wirelessly communicate RF signals using antennas.


Examples of RF communication systems that utilize antennas for communication include, but are not limited to mobile phones, tablets, base stations, network access points, laptops, and wearable electronics. RF signals have a frequency in the range from about 30 kHz to 300 GHz, for instance, in the range of about 425 MHz to about 7.125 GHz for Frequency Range 1 (FR1) of the Fifth Generation (5G) communication standard or in the range of about 24.250 GHz to about 71.000 GHz for Frequency Range 2 (FR2) of the 5G communication standard.


SUMMARY

In certain embodiments, the present disclosure relates to a mobile device. The mobile device includes a front end system including a first radio frequency signal conditioning circuit configured to condition a first radio frequency signal of a first frequency, and a plurality of second radio frequency signal conditioning circuits configured to condition a plurality of second radio frequency signals of a second frequency that is greater than the first frequency. The mobile device further includes an antenna structure including a plurality of switches operable in a first mode and a second mode, and an antenna array of including a plurality of antenna elements interconnect by the plurality of switches, the antenna array operable to handle the first radio frequency signal in the first mode, and to handle the plurality of second radio frequency signals in the second mode.


In various embodiments, the plurality of antenna elements correspond to a plurality of patch antennas. According to a number of embodiments, the plurality of antenna elements are joined to operate as a planar inverted F antenna in the first mode.


In several embodiments, each of the plurality of switches is closed in the first mode and open in the second mode.


In some embodiments, the first frequency is in fifth generation frequency range one and the second frequency is in fifth generation frequency range two.


In various embodiments, the first radio frequency signal conditioning circuit includes a power amplifier configured to output the first radio frequency signal, and the plurality of second radio frequency signal conditioning circuits include a plurality of power amplifiers configured to output the plurality of second radio frequency signals.


In several embodiments, the first radio frequency signal conditioning circuit includes a low noise amplifier configured to receive the first radio frequency signal, and the plurality of second radio frequency signal conditioning circuits include a plurality of low noise amplifiers configured to receive the plurality of second radio frequency signals.


In various embodiments, the plurality of second radio frequency signal conditioning circuits are configured to adjust a gain and a phase of the plurality of second radio frequency signals to provide beamforming.


In certain embodiments, the present disclosure relates to an antenna system including a first radio frequency signal conditioning circuit configured to condition a first radio frequency signal of a first frequency, a plurality of second radio frequency signal conditioning circuits configured to condition a plurality of second radio frequency signals of a second frequency that is greater than the first frequency, a plurality of switches operable in a first mode and a second mode, and an antenna array of including a plurality of antenna elements interconnect by the plurality of switches, the antenna array operable to handle the first radio frequency signal in the first mode, and to handle the plurality of second radio frequency signals in the second mode.


In various embodiments, the plurality of antenna elements correspond to a plurality of patch antennas. According to a number of embodiments, the plurality of antenna elements are joined to operate as a planar inverted F antenna in the first mode.


In several embodiments, each of the plurality of switches is closed in the first mode and open in the second mode.


In some embodiments, the first frequency is in fifth generation frequency range one and the second frequency is in fifth generation frequency range two.


In a number of embodiments, the first radio frequency signal conditioning circuit includes a power amplifier configured to output the first radio frequency signal, and the plurality of second radio frequency signal conditioning circuits include a plurality of power amplifiers configured to output the plurality of second radio frequency signals.


In several embodiments, the first radio frequency signal conditioning circuit includes a low noise amplifier configured to receive the first radio frequency signal, and the plurality of second radio frequency signal conditioning circuits include a plurality of low noise amplifiers configured to receive the plurality of second radio frequency signals.


In various embodiments, the plurality of second radio frequency signal conditioning circuits are configured to adjust a gain and a phase of the plurality of second radio frequency signals to provide beamforming.


In certain embodiments, the present disclosure relates to a method of signal communication in a mobile device. The method includes conditioning a first radio frequency signal of a first frequency using a first radio frequency signal conditioning circuit of a front end system, conditioning a plurality of second radio frequency signals of a second frequency that is greater than the first frequency using a plurality of second radio frequency signal conditioning circuits of the front end system, and controlling a plurality of switches that interconnect a plurality of antenna elements of an antenna array, including operating the plurality of switches in a first mode in which the antenna array handles the first radio frequency signal, and operating the plurality of switches in a second mode in which the antenna array handles the plurality of second radio frequency signals.


In various embodiments, the method further includes closing each of the plurality of switches in the first mode and opening each of the plurality of switches in the second mode.


In several embodiments, the first frequency is in fifth generation frequency range one and the second range is in fifth generation frequency range two.


In some embodiments, the method further includes using the plurality of second radio frequency signal conditioning circuits to provide a gain and a phase adjustment to the plurality of second radio frequency signals to provide beamforming.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of one example of a communication network.



FIG. 2A is a schematic diagram of one example of a communication link using carrier aggregation.



FIG. 2B illustrates various examples of uplink carrier aggregation for the communication link of FIG. 2A.



FIG. 2C illustrates various examples of downlink carrier aggregation for the communication link of FIG. 2A.



FIG. 3A is a schematic diagram of one example of a downlink channel using multi-input and multi-output (MIMO) communications.



FIG. 3B is schematic diagram of one example of an uplink channel using MIMO communications.



FIG. 3C is schematic diagram of another example of an uplink channel using MIMO communications.



FIG. 4A is a schematic diagram of one example of a communication system that operates with beamforming.



FIG. 4B is a schematic diagram of one example of beamforming to provide a transmit beam.



FIG. 4C is a schematic diagram of one example of beamforming to provide a receive beam.



FIG. 5A is a schematic diagram of an antenna system according to one embodiment.



FIG. 5B is a schematic diagram of an antenna system according to another embodiment.



FIG. 5C is a schematic diagram of an antenna system according to another embodiment.



FIG. 5D is a portion of an antenna array according to another embodiment.



FIG. 5E is a portion of an antenna array according to another embodiment.



FIG. 5F is a schematic diagram of communication system according to another embodiment.



FIG. 6A is a perspective view of one embodiment of a module that operates with beamforming.



FIG. 6B is a cross-section of the module of FIG. 6A taken along the lines 6B-6B.



FIG. 7 is a schematic diagram of one embodiment of a mobile device.



FIG. 8 is a schematic diagram of a power amplifier system according to one embodiment.





DETAILED DESCRIPTION OF EMBODIMENTS

The following detailed description of certain embodiments presents various descriptions of specific embodiments. However, the innovations described herein can be embodied in a multitude of different ways, for example, as defined and covered by the claims. In this description, reference is made to the drawings where like reference numerals can indicate identical or functionally similar elements. It will be understood that elements illustrated in the figures are not necessarily drawn to scale. Moreover, it will be understood that certain embodiments can include more elements than illustrated in a drawing and/or a subset of the elements illustrated in a drawing. Further, some embodiments can incorporate any suitable combination of features from two or more drawings.


The International Telecommunication Union (ITU) is a specialized agency of the United Nations (UN) responsible for global issues concerning information and communication technologies, including the shared global use of radio spectrum.


The 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications standard bodies across the world, such as the Association of Radio Industries and Businesses (ARIB), the Telecommunications Technology Committee (TTC), the China Communications Standards Association (CCSA), the Alliance for Telecommunications Industry Solutions (ATIS), the Telecommunications Technology Association (TTA), the European Telecommunications Standards Institute (ETSI), and the Telecommunications Standards Development Society, India (TSDSI).


Working within the scope of the ITU, 3GPP develops and maintains technical specifications for a variety of mobile communication technologies, including, for example, second generation (2G) technology (for instance, Global System for Mobile Communications (GSM) and Enhanced Data Rates for GSM Evolution (EDGE)), third generation (3G) technology (for instance, Universal Mobile Telecommunications System (UMTS) and High Speed Packet Access (HSPA)), and fourth generation (4G) technology (for instance, Long Term Evolution (LTE) and LTE-Advanced).


The technical specifications controlled by 3GPP can be expanded and revised by specification releases, which can span multiple years and specify a breadth of new features and evolutions.


In one example, 3GPP introduced carrier aggregation (CA) for LTE in Release 10. Although initially introduced with two downlink carriers, 3GPP expanded carrier aggregation in Release 14 to include up to five downlink carriers and up to three uplink carriers. Other examples of new features and evolutions provided by 3GPP releases include, but are not limited to, License Assisted Access (LAA), enhanced LAA (eLAA), Narrowband Internet of things (NB-IOT), Vehicle-to-Everything (V2X), and High Power User Equipment (HPUE).


3GPP introduced Phase 1 of fifth generation (5G) technology in Release 15, and introduced Phase 2 of 5G technology in Release 16. Subsequent 3GPP releases will further evolve and expand 5G technology. 5G technology is also referred to herein as 5G New Radio (NR).


5G NR supports or plans to support a variety of features, such as communications over millimeter wave spectrum, beamforming capability, high spectral efficiency waveforms, low latency communications, multiple radio numerology, and/or non-orthogonal multiple access (NOMA). Although such RF functionalities offer flexibility to networks and enhance user data rates, supporting such features can pose a number of technical challenges.


The teachings herein are applicable to a wide variety of communication systems, including, but not limited to, communication systems using advanced cellular technologies, such as LTE-Advanced, LTE-Advanced Pro, and/or 5G NR.



FIG. 1 is a schematic diagram of one example of a communication network 10. The communication network 10 includes a macro cell base station 1, a small cell base station 3, and various examples of user equipment (UE), including a first mobile device 2a, a wireless-connected car 2b, a laptop 2c, a stationary wireless device 2d, a wireless-connected train 2e, a second mobile device 2f, and a third mobile device 2g.


Although specific examples of base stations and user equipment are illustrated in FIG. 1, a communication network can include base stations and user equipment of a wide variety of types and/or numbers.


For instance, in the example shown, the communication network 10 includes the macro cell base station 1 and the small cell base station 3. The small cell base station 3 can operate with relatively lower power, shorter range, and/or with fewer concurrent users relative to the macro cell base station 1. The small cell base station 3 can also be referred to as a femtocell, a picocell, or a microcell. Although the communication network 10 is illustrated as including two base stations, the communication network 10 can be implemented to include more or fewer base stations and/or base stations of other types.


Although various examples of user equipment are shown, the teachings herein are applicable to a wide variety of user equipment, including, but not limited to, mobile phones, tablets, laptops, IoT devices, wearable electronics, customer premises equipment (CPE), wireless-connected vehicles, wireless relays, and/or a wide variety of other communication devices. Furthermore, user equipment includes not only currently available communication devices that operate in a cellular network, but also subsequently developed communication devices that will be readily implementable with the inventive systems, processes, methods, and devices as described and claimed herein.


The illustrated communication network 10 of FIG. 1 supports communications using a variety of cellular technologies, including, for example, 4G LTE and 5G NR. In certain implementations, the communication network 10 is further adapted to provide a wireless local area network (WLAN), such as WiFi. Although various examples of communication technologies have been provided, the communication network 10 can be adapted to support a wide variety of communication technologies.


Various communication links of the communication network 10 have been depicted in FIG. 1. The communication links can be duplexed in a wide variety of ways, including, for example, using frequency-division duplexing (FDD) and/or time-division duplexing (TDD). FDD is a type of radio frequency communications that uses different frequencies for transmitting and receiving signals. FDD can provide a number of advantages, such as high data rates and low latency. In contrast, TDD is a type of radio frequency communications that uses about the same frequency for transmitting and receiving signals, and in which transmit and receive communications are switched in time. TDD can provide a number of advantages, such as efficient use of spectrum and variable allocation of throughput between transmit and receive directions.


In certain implementations, user equipment can communicate with a base station using one or more of 4G LTE, 5G NR, and WiFi technologies. In certain implementations, enhanced license assisted access (eLAA) is used to aggregate one or more licensed frequency carriers (for instance, licensed 4G LTE and/or 5G NR frequencies), with one or more unlicensed carriers (for instance, unlicensed WiFi frequencies).


As shown in FIG. 1, the communication links include not only communication links between UE and base stations, but also UE to UE communications and base station to base station communications. For example, the communication network 10 can be implemented to support self-fronthaul and/or self-backhaul (for instance, as between mobile device 2g and mobile device 2f).


The communication links can operate over a wide variety of frequencies. In certain implementations, communications are supported using 5G NR technology over one or more frequency bands that are less than 6 Gigahertz (GHz) and/or over one or more frequency bands that are greater than 6 GHz. For example, the communication links can serve Frequency Range 1 (FR1), Frequency Range 2 (FR2), or a combination thereof. In one embodiment, one or more of the mobile devices support a HPUE power class specification.


In certain implementations, a base station and/or user equipment communicates using beamforming. For example, beamforming can be used to focus signal strength to overcome path losses, such as high loss associated with communicating over high signal frequencies. In certain embodiments, user equipment, such as one or more mobile phones, communicate using beamforming on millimeter wave frequency bands in the range of 30 GHz to 300 GHz and/or upper centimeter wave frequencies in the range of 6 GHz to 30 GHz, or more particularly, 24 GHz to 30 GHz. Cellular user equipment can communicate using beamforming and/or other techniques over a wide range of frequencies, including, for example, FR2-1 (24 GHz to 52 GHz), FR2-2 (52 GHz to 71 GHz), and/or FR1 (425 MHz to 7125 MHz).


Different users of the communication network 10 can share available network resources, such as available frequency spectrum, in a wide variety of ways.


In one example, frequency division multiple access (FDMA) is used to divide a frequency band into multiple frequency carriers. Additionally, one or more carriers are allocated to a particular user. Examples of FDMA include, but are not limited to, single carrier FDMA (SC-FDMA) and orthogonal FDMA (OFDMA). OFDMA is a multicarrier technology that subdivides the available bandwidth into multiple mutually orthogonal narrowband subcarriers, which can be separately assigned to different users.


Other examples of shared access include, but are not limited to, time division multiple access (TDMA) in which a user is allocated particular time slots for using a frequency resource, code division multiple access (CDMA) in which a frequency resource is shared amongst different users by assigning each user a unique code, space-divisional multiple access (SDMA) in which beamforming is used to provide shared access by spatial division, and non-orthogonal multiple access (NOMA) in which the power domain is used for multiple access. For example, NOMA can be used to serve multiple users at the same frequency, time, and/or code, but with different power levels.


Enhanced mobile broadband (eMBB) refers to technology for growing system capacity of LTE networks. For example, eMBB can refer to communications with a peak data rate of at least 10 Gbps and a minimum of 100 Mbps for each user. Ultra-reliable low latency communications (uRLLC) refers to technology for communication with very low latency, for instance, less than 2 milliseconds. uRLLC can be used for mission-critical communications such as for autonomous driving and/or remote surgery applications. Massive machine-type communications (mMTC) refers to low cost and low data rate communications associated with wireless connections to everyday objects, such as those associated with Internet of Things (IoT) applications.


The communication network 10 of FIG. 1 can be used to support a wide variety of advanced communication features, including, but not limited to, eMBB, uRLLC, and/or mMTC.



FIG. 2A is a schematic diagram of one example of a communication link using carrier aggregation. Carrier aggregation can be used to widen bandwidth of the communication link by supporting communications over multiple frequency carriers, thereby increasing user data rates and enhancing network capacity by utilizing fragmented spectrum allocations.


In the illustrated example, the communication link is provided between a base station 21 and a mobile device 22. As shown in FIG. 2A, the communications link includes a downlink channel used for RF communications from the base station 21 to the mobile device 22, and an uplink channel used for RF communications from the mobile device 22 to the base station 21.


Although FIG. 2A illustrates carrier aggregation in the context of FDD communications, carrier aggregation can also be used for TDD communications.


In certain implementations, a communication link can provide asymmetrical data rates for a downlink channel and an uplink channel. For example, a communication link can be used to support a relatively high downlink data rate to enable high speed streaming of multimedia content to a mobile device, while providing a relatively slower data rate for uploading data from the mobile device to the cloud.


In the illustrated example, the base station 21 and the mobile device 22 communicate via carrier aggregation, which can be used to selectively increase bandwidth of the communication link. Carrier aggregation includes contiguous aggregation, in which contiguous carriers within the same operating frequency band are aggregated. Carrier aggregation can also be non-contiguous, and can include carriers separated in frequency within a common band or in different bands.


In the example shown in FIG. 2A, the uplink channel includes three aggregated component carriers fUL1, fUL2, and fUL3. Additionally, the downlink channel includes five aggregated component carriers fDL1, fDL2, fDL3, fDL4, and fDL5. Although one example of component carrier aggregation is shown, more or fewer carriers can be aggregated for uplink and/or downlink. Moreover, a number of aggregated carriers can be varied over time to achieve desired uplink and downlink data rates.


For example, a number of aggregated carriers for uplink and/or downlink communications with respect to a particular mobile device can change over time. For example, the number of aggregated carriers can change as the device moves through the communication network and/or as network usage changes over time.



FIG. 2B illustrates various examples of uplink carrier aggregation for the communication link of FIG. 2A. FIG. 2B includes a first carrier aggregation scenario 31, a second carrier aggregation scenario 32, and a third carrier aggregation scenario 33, which schematically depict three types of carrier aggregation.


The carrier aggregation scenarios 31-33 illustrate different spectrum allocations for a first component carrier fUL1, a second component carrier fUL2, and a third component carrier fUL3. Although FIG. 2B is illustrated in the context of aggregating three component carriers, carrier aggregation can be used to aggregate more or fewer carriers. Moreover, although illustrated in the context of uplink, the aggregation scenarios are also applicable to downlink.


The first carrier aggregation scenario 31 illustrates intra-band contiguous carrier aggregation, in which component carriers that are adjacent in frequency and in a common frequency band are aggregated. For example, the first carrier aggregation scenario 31 depicts aggregation of component carriers fUL1, fUL2, and fUL3 that are contiguous and located within a first frequency band BAND1.


With continuing reference to FIG. 2B, the second carrier aggregation scenario 32 illustrates intra-band non-continuous carrier aggregation, in which two or more components carriers that are non-adjacent in frequency and within a common frequency band are aggregated. For example, the second carrier aggregation scenario 32 depicts aggregation of component carriers fUL1, fUL2, and fUL3 that are non-contiguous, but located within a first frequency band BAND1.


The third carrier aggregation scenario 33 illustrates inter-band non-contiguous carrier aggregation, in which component carriers that are non-adjacent in frequency and in multiple frequency bands are aggregated. For example, the third carrier aggregation scenario 33 depicts aggregation of component carriers fUL1 and fUL2 of a first frequency band BAND1 with component carrier fUL3 of a second frequency band BAND2.



FIG. 2C illustrates various examples of downlink carrier aggregation for the communication link of FIG. 2A. The examples depict various carrier aggregation scenarios 34-38 for different spectrum allocations of a first component carrier fDL1, a second component carrier fDL2, a third component carrier fDL3, a fourth component carrier fDL4, and a fifth component carrier fDL5. Although FIG. 2C is illustrated in the context of aggregating five component carriers, carrier aggregation can be used to aggregate more or fewer carriers. Moreover, although illustrated in the context of downlink, the aggregation scenarios are also applicable to uplink.


The first carrier aggregation scenario 34 depicts aggregation of component carriers that are contiguous and located within the same frequency band. Additionally, the second carrier aggregation scenario 35 and the third carrier aggregation scenario 36 illustrates two examples of aggregation that are non-contiguous, but located within the same frequency band. Furthermore, the fourth carrier aggregation scenario 37 and the fifth carrier aggregation scenario 38 illustrates two examples of aggregation in which component carriers that are non-adjacent in frequency and in multiple frequency bands are aggregated. As a number of aggregated component carriers increases, a complexity of possible carrier aggregation scenarios also increases.


With reference to FIGS. 2A-2C, the individual component carriers used in carrier aggregation can be of a variety of frequencies, including, for example, frequency carriers in the same band or in multiple bands. Additionally, carrier aggregation is applicable to implementations in which the individual component carriers are of about the same bandwidth as well as to implementations in which the individual component carriers have different bandwidths.


Certain communication networks allocate a particular user device with a primary component carrier (PCC) or anchor carrier for uplink and a PCC for downlink. Additionally, when the mobile device communicates using a single frequency carrier for uplink or downlink, the user device communicates using the PCC. To enhance bandwidth for uplink communications, the uplink PCC can be aggregated with one or more uplink secondary component carriers (SCCs). Additionally, to enhance bandwidth for downlink communications, the downlink PCC can be aggregated with one or more downlink SCCs.


In certain implementations, a communication network provides a network cell for each component carrier. Additionally, a primary cell can operate using a PCC, while a secondary cell can operate using a SCC. The primary and secondary cells may have different coverage areas, for instance, due to differences in frequencies of carriers and/or network environment.


License assisted access (LAA) refers to downlink carrier aggregation in which a licensed frequency carrier associated with a mobile operator is aggregated with a frequency carrier in unlicensed spectrum, such as WiFi. LAA employs a downlink PCC in the licensed spectrum that carries control and signaling information associated with the communication link, while unlicensed spectrum is aggregated for wider downlink bandwidth when available. LAA can operate with dynamic adjustment of secondary carriers to avoid WiFi users and/or to coexist with WiFi users. Enhanced license assisted access (eLAA) refers to an evolution of LAA that aggregates licensed and unlicensed spectrum for both downlink and uplink. Furthermore, NR-U can operate on top of LAA/eLAA over a 5 GHz band (5150 to 5925 MHz) and/or a 6 GHz band (5925 MHz to 7125 MHz).



FIG. 3A is a schematic diagram of one example of a downlink channel using multi-input and multi-output (MIMO) communications. FIG. 3B is schematic diagram of one example of an uplink channel using MIMO communications.


MIMO communications use multiple antennas for simultaneously communicating multiple data streams over common frequency spectrum. In certain implementations, the data streams operate with different reference signals to enhance data reception at the receiver. MIMO communications benefit from higher SNR, improved coding, and/or reduced signal interference due to spatial multiplexing differences of the radio environment.


MIMO order refers to a number of separate data streams sent or received. For instance, MIMO order for downlink communications can be described by a number of transmit antennas of a base station and a number of receive antennas for UE, such as a mobile device. For example, two-by-two (2×2) DL MIMO refers to MIMO downlink communications using two base station antennas and two UE antennas. Additionally, four-by-four (4×4) DL MIMO refers to MIMO downlink communications using four base station antennas and four UE antennas.


In the example shown in FIG. 3A, downlink MIMO communications are provided by transmitting using M antennas 43a, 43b, 43c, . . . 43m of the base station 41 and receiving using N antennas 44a, 44b, 44c, . . . 44n of the mobile device 42. Accordingly, FIG. 3A illustrates an example of m×n DL MIMO.


Likewise, MIMO order for uplink communications can be described by a number of transmit antennas of UE, such as a mobile device, and a number of receive antennas of a base station. For example, 2×2 UL MIMO refers to MIMO uplink communications using two UE antennas and two base station antennas. Additionally, 4×4 UL MIMO refers to MIMO uplink communications using four UE antennas and four base station antennas.


In the example shown in FIG. 3B, uplink MIMO communications are provided by transmitting using N antennas 44a, 44b, 44c, . . . 44n of the mobile device 42 and receiving using M antennas 43a, 43b, 43c, . . . 43m of the base station 41. Accordingly, FIG. 3B illustrates an example of n×m UL MIMO.


By increasing the level or order of MIMO, bandwidth of an uplink channel and/or a downlink channel can be increased.


MIMO communications are applicable to communication links of a variety of types, such as FDD communication links and TDD communication links.



FIG. 3C is schematic diagram of another example of an uplink channel using MIMO communications. In the example shown in FIG. 3C, uplink MIMO communications are provided by transmitting using N antennas 44a, 44b, 44c, . . . 44n of the mobile device 42. Additional a first portion of the uplink transmissions are received using M antennas 43a1, 43b1, 43c1, . . . 43m1 of a first base station 41a, while a second portion of the uplink transmissions are received using M antennas 43a2, 43b2, 43c2, . . . 43m2 of a second base station 41b. Additionally, the first base station 41a and the second base station 41b communication with one another over wired, optical, and/or wireless links.


The MIMO scenario of FIG. 3C illustrates an example in which multiple base stations cooperate to facilitate MIMO communications.



FIG. 4A is a schematic diagram of one example of a communication system 110 that operates with beamforming. The communication system 110 includes a transceiver 105, signal conditioning circuits 104a1, 104a2 . . . 104an, 104b1, 104b2 . . . 104bn, 104m1, 104m2 . . . 104mn, and an antenna array 102 that includes antenna elements 103a1, 103a2 . . . 103an, 103b1, 103b2 . . . 103bn, 103m1, 103m2 . . . 103mn.


Communications systems that communicate using millimeter wave carriers (for instance, 30 GHz to 300 GHz), centimeter wave carriers (for instance, 3 GHz to 30 GHz), and/or other frequency carriers can employ an antenna array to provide beam formation and directivity for transmission and/or reception of signals.


For example, in the illustrated embodiment, the communication system 110 includes an array 102 of m×n antenna elements, which are each controlled by a separate signal conditioning circuit, in this embodiment. As indicated by the ellipses, the communication system 110 can be implemented with any suitable number of antenna elements and signal conditioning circuits.


With respect to signal transmission, the signal conditioning circuits can provide transmit signals to the antenna array 102 such that signals radiated from the antenna elements combine using constructive and destructive interference to generate an aggregate transmit signal exhibiting beam-like qualities with more signal strength propagating in a given direction away from the antenna array 102.


In the context of signal reception, the signal conditioning circuits process the received signals (for instance, by separately controlling received signal phases) such that more signal energy is received when the signal is arriving at the antenna array 102 from a particular direction. Accordingly, the communication system 110 also provides directivity for reception of signals.


The relative concentration of signal energy into a transmit beam or a receive beam can be enhanced by increasing the size of the array. For example, with more signal energy focused into a transmit beam, the signal is able to propagate for a longer range while providing sufficient signal level for RF communications. For instance, a signal with a large proportion of signal energy focused into the transmit beam can exhibit high effective isotropic radiated power (EIRP).


In the illustrated embodiment, the transceiver 105 provides transmit signals to the signal conditioning circuits and processes signals received from the signal conditioning circuits. As shown in FIG. 4A, the transceiver 105 generates control signals for the signal conditioning circuits. The control signals can be used for a variety of functions, such as controlling the gain and phase of transmitted and/or received signals to control beamforming.



FIG. 4B is a schematic diagram of one example of beamforming to provide a transmit beam. FIG. 4B illustrates a portion of a communication system including a first signal conditioning circuit 114a, a second signal conditioning circuit 114b, a first antenna element 113a, and a second antenna element 113b.


Although illustrated as included two antenna elements and two signal conditioning circuits, a communication system can include additional antenna elements and/or signal conditioning circuits. For example, FIG. 4B illustrates one embodiment of a portion of the communication system 110 of FIG. 4A.


The first signal conditioning circuit 114a includes a first phase shifter 130a, a first power amplifier 131a, a first low noise amplifier (LNA) 132a, and switches for controlling selection of the power amplifier 131a or LNA 132a. Additionally, the second signal conditioning circuit 114b includes a second phase shifter 130b, a second power amplifier 131b, a second LNA 132b, and switches for controlling selection of the power amplifier 131b or LNA 132b.


Although one embodiment of signal conditioning circuits is shown, other implementations of signal conditioning circuits are possible. For instance, in one example, a signal conditioning circuit includes one or more band filters, duplexers, and/or other components.


In the illustrated embodiment, the first antenna element 113a and the second antenna element 113b are separated by a distance d. Additionally, FIG. 4B has been annotated with an angle Θ, which in this example has a value of about 90° when the transmit beam direction is substantially perpendicular to a plane of the antenna array and a value of about 0° when the transmit beam direction is substantially parallel to the plane of the antenna array.


By controlling the relative phase of the transmit signals provided to the antenna elements 113a, 113b, a desired transmit beam angle Θ can be achieved. For example, when the first phase shifter 130a has a reference value of 0°, the second phase shifter 130b can be controlled to provide a phase shift of about −2πf(d/ν)cos Θ radians, where f is the fundamental frequency of the transmit signal, d is the distance between the antenna elements, ν is the velocity of the radiated wave, and π is the mathematic constant pi.


In certain implementations, the distance d is implemented to be about ½λ, where λ is the wavelength of the fundamental component of the transmit signal. In such implementations, the second phase shifter 130b can be controlled to provide a phase shift of about −π cos Θ radians to achieve a transmit beam angle Θ.


Accordingly, the relative phase of the phase shifters 130a, 130b can be controlled to provide transmit beamforming. In certain implementations, a baseband processor and/or a transceiver (for example, the transceiver 105 of FIG. 4A) controls phase values of one or more phase shifters and gain values of one or more controllable amplifiers to control beamforming.



FIG. 4C is a schematic diagram of one example of beamforming to provide a receive beam. FIG. 4C is similar to FIG. 4B, except that FIG. 4C illustrates beamforming in the context of a receive beam rather than a transmit beam.


As shown in FIG. 4C, a relative phase difference between the first phase shifter 130a and the second phase shifter 130b can be selected to about equal to −2πf(d/ν)cos Θ radians to achieve a desired receive beam angle Θ. In implementations in which the distance d corresponds to about ½λ, the phase difference can be selected to about equal to −n cos Θ radians to achieve a receive beam angle Θ.


Although various equations for phase values to provide beamforming have been provided, other phase selection values are possible, such as phase values selected based on implementation of an antenna array, implementation of signal conditioning circuits, and/or a radio environment.



FIG. 5A is a schematic diagram of an antenna system 125 according to one embodiment.


The antenna system 125 includes various power amplifiers operating over FR1 or FR2. In particular, the antenna system 125 includes FR2 power amplifiers 120aa, 120ab, . . . 120am, 120ba, 120bb, . . . 120bm, . . . 120na, 120nb, . . . 120nm and FR1 power amplifier 121. The antenna system 125 further includes an array of FR2 antennas 123aa, 123ab, . . . 123am, 123ba, 123bb, . . . 123bm, . . . 123na, 123nb, . . . 123nm joined by switches 124.


The power amplifiers 120aa, 120ab, . . . 120am, 120ba, 120bb, . . . 120bm, . . . 120na, 120nb, . . . 120nm amplify a variety of RF signals in FR2 for wireless transmission. Furthermore, the FR1 power amplifier 121 amplifies an RF signal in FR1 for wireless transmission. The depicted power amplifiers can be included in signal conditioning circuits of an RF front end system.


When the switches 124 are opened, the array of FR2 antennas 123aa, 123ab, . . . 123am, 123ba, 123bb, . . . 123bm, . . . 123na, 123nb, . . . 123nm serve to transmit the amplified RF signals from the FR2 power amplifiers 120aa, 120ab, . . . 120am, 120ba, 120bb, . . . 120bm, . . . 120na, 120nb, . . . 120nm, respectively, However, when the switches 124 are closed, the FR2 antennas are electrically joined to serve as an FR1 antenna 122 for transmitting the amplified RF signal from the FR1 power amplifier 121.


In the illustrated embodiment, the FR2 antennas are arranged in an n by m array. For example, the array can be square or rectangular. Thus, n and m can be any integer values, with n×m greater than or equal to 2, or more particularly, 4 or more. Although the example depicted is an array, other implementations are possible, such as configurations using non-uniform patterns and/or spacings.


The FR2 antennas can be implemented in a wide variety of ways including, but not limited to, patch antennas. In certain implementations, when joined, the FR1 antenna 122 operates as a planar inverted F antenna (PIFA).


In certain embodiments, gain and phase adjustment circuits are included in series with each power amplifier to aid in providing gain and phase control for beamforming.



FIG. 5B is a schematic diagram of an antenna system 128 according to another embodiment.


The antenna system 128 includes various low noise amplifiers operating over FR1 or FR2. In particular, the antenna system 128 includes FR2 low noise amplifiers 126aa, 126ab, . . . 126am, 126ba, 126bb, . . . 126bm, . . . 126na, 126nb, . . . 126nm and FR1 low noise amplifier 127. The antenna system 128 further includes an array of FR2 antennas 123aa, 123ab, . . . 123am, 123ba, 123bb, . . . 123bm, . . . 123na, 123nb, . . . 123nm joined by switches 124.


When the switches 124 are opened, the array of FR2 antennas 123aa, 123ab, . . . 123am, 123ba, 123bb, . . . 123bm, . . . 123na, 123nb, . . . 123nm serve to wirelessly receive FR2 receive signals, which are provided to the FR2 low noise amplifiers 126aa, 126ab, . . . 126am, 126ba, 126bb, . . . 126bm, . . . 126na, 126nb, . . . 126nm for amplification. However, when the switches 124 are closed, the FR2 antennas are electrically joined to serve as an FR1 antenna 122 to wirelessly receive an FR1 receive signal, which is provided to the FR1 low noise amplifier 127 for amplification.


Thus, the low noise amplifiers 126aa, 126ab, . . . 126am, 126ba, 126bb, . . . 126bm, . . . 126na, 126nb, . . . 126nm amplify a variety of RF signals in FR2 received wirelessly by the array of FR2 antennas, while the FR1 low noise amplifier 127 amplifies an RF signal in FR1. The depicted low noise amplifiers can be included in signal conditioning circuits of an RF front end system.


In certain embodiments, gain and phase adjustment circuits are included in series with each low noise amplifier to aid in providing gain and phase control for beamforming.



FIG. 5C is a schematic diagram of an antenna system 129 according to another embodiment.


The antenna system 129 includes various signal conditioning circuits operating over FR1 or FR2. In particular, the antenna system 129 includes FR2 signal conditioning circuits 134aa, 134ab, . . . 134am, 134ba, 134bb, . . . 134bm, . . . 134na, 134nb, . . . 134nm and FR1 signal conditioning circuit 136.


When the switches 124 are opened, the array of FR2 antennas 123aa, 123ab, . . . 123am, 123ba, 123bb, . . . 123bm, . . . 123na, 123nb, . . . 123nm serve to wirelessly transmit or receive FR2 signals. For example, each of the array of FR2 antennas 123aa, 123ab, . . . 123am, 123ba, 123bb, . . . 123bm, . . . 123na, 123nb, . . . 123nm are connected to corresponding FR2 signal conditioning circuits 134aa, 134ab, . . . 134am, 134ba, 134bb, . . . 134bm, . . . 134na, 134nb, . . . 134nm, which can each be configured to transmit or receive.


In particular, in the illustrated embodiment the FR2 signal conditioning circuits 134aa, 134ab, . . . 134am, 134ba, 134bb, . . . 134bm, . . . 134na, 134nb, . . . 134nm include FR2 power amplifiers 120aa, 120ab, . . . 120am, 120ba, 120bb, . . . 120bm, . . . 120na, 120nb, . . . 120nm, FR2 low noise amplifiers 126aa, 126ab, . . . 126am, 126ba, 126bb, . . . 126bm, . . . 126na, 126nb, . . . 126nm, and FR2 transmit/receive (T/R) switches 133aa, 133ab, . . . 133am, 133ba, 133bb, . . . 133bm, . . . 133na, 133nb, . . . 133nm for selecting the power amplifiers for FR2 signal transmission or the low noise amplifiers for FR2 signal reception.


However, when the switches 124 are closed, the FR2 antennas are electrically joined to serve as an FR1 antenna 122 to wirelessly transmit or receive an FR1 signal. For example, in the illustrated embodiment, the FR1 signal conditioning circuit 136 includes an FR1 power amplifier 121, an FR2 low noise amplifier 127, and an FR1 T/R switch 135 for selecting the FR1 power amplifier 121 for FR1 signal transmission or the FR1 low noise amplifier 127 for FR1 signal reception.


In certain embodiments, gain and phase adjustment circuits are included in each FR2 signal conditioning circuit to aid in providing gain and phase control for beamforming. Such beamforming can be for transmit and/or receive.



FIG. 5D is a portion of an antenna array 139 according to another embodiment. The antenna array 139 includes FR2 antenna elements 131 positioned beneath a layer 132.



FIG. 5E is a portion of an antenna array 159 according to another embodiment. The antenna array 159 includes FR2 antenna elements 157 embedded in a layer 158.



FIG. 5F is a schematic diagram of a communication system 180 according to another embodiment. The communication system 180 includes a transceiver 171, a front end system 172, and an antenna structure 173.


In the illustrated embodiment, the front end system 172 includes FR2 signal conditioning circuits 175 for conditioning FR2 transmit signals received from the transceiver 171 and/or FR2 receive signals provided to the transceiver 171. In certain implementations, the FR2 signal conditioning circuits 175 include gain adjustment circuits 177 and phase adjustment circuits 178 for providing channel-specific gain and phase adjustments for beamforming.


The front end system 172 further includes an FR1 signal conditioning circuit 176 for conditioning an FR1 transmit signal received from the transceiver 171 and/or an FR1 receive signal provided to the transceiver 171.


In the illustrated embodiment, the antenna structure 173 is switch-controlled to operate as either an array of patch antennas for FR2 communications or as a PIFA antenna for FR1 communications.


The depicted components are interconnected by an interface 179, which can be used to send control data (CTL) for setting the state of the switches of the antenna structure 173 and/or settings of the signal conditioning circuits (for example, gain settings, phase settings, and switch settings).



FIG. 6A is a perspective view of one embodiment of a module 140 that operates with beamforming. FIG. 6B is a cross-section of the module 140 of FIG. 6A taken along the lines 6B-6B.


The module 140 includes a laminated substrate or laminate 141, a semiconductor die or IC 142, surface mount components 143, and an antenna array including patch antenna elements 151-166.


Although one embodiment of a module is shown in FIGS. 6A and 6B, the teachings herein are applicable to modules implemented in a wide variety of ways. For example, a module can include a different arrangement of and/or number of antenna elements, dies, and/or surface mount components. Additionally, the module 140 can include additional structures and components including, but not limited to, encapsulation structures, shielding structures, and/or wirebonds.


In the illustrated embodiment, the antenna elements 151-166 are formed on a first surface of the laminate 141, and can be used to transmit and/or receive signals. Although the illustrated antenna elements 151-166 are rectangular, the antenna elements 151-166 can be shaped in other ways. Additionally, although a 4×4 array of antenna elements is shown, more or fewer antenna elements can be provided. Moreover, antenna elements can be arrayed in other patterns or configurations. Furthermore, in another embodiment, multiple antenna arrays are provided, such as separate antenna arrays for transmit and receive and/or multiple antenna arrays for MIMO and/or switched diversity.


In certain implementations, the antenna elements 151-166 are implemented as patch antennas. A patch antenna can include a planar antenna element positioned over a ground plane. A patch antenna can have a relatively thin profile and exhibit robust mechanical strength. In certain configurations, the antenna elements 151-166 are implemented as patch antennas with planar antenna elements formed on the first surface of the laminate 141 and the ground plane formed using an internal conductive layer of the laminate 141.


Although an example with patch antennas is shown, a modulate can include any suitable antenna elements, including, but not limited to, patch antennas, dipole antennas, ceramic resonators, stamped metal antennas, and/or laser direct structuring antennas. Such antenna elements can include switches therebetween (and formed on the IC 142) that can decouple the antenna elements for FR2 communications or couple the antenna elements for FR1 communications.


In the illustrated embodiment, the IC 142 and the surface mount components 143 are on a second surface of the laminate 141 opposite the first surface.


In certain implementations, the IC 142 includes signal conditioning circuits associated with the antenna elements 151-166. In one embodiment, the IC 142 includes a serial interface, such as a mobile industry processor interface radio frequency front-end (MIPI RFFE) bus and/or inter-integrated circuit (I2C) bus that receives data for controlling the signal conditioning circuits, such as the amount of phase shifting provided by phase shifters. In another embodiment, the IC 142 includes signal conditioning circuits associated with the antenna elements 151-166 and an integrated transceiver.


The laminate 141 can be implemented in a variety of ways, and can include for example, conductive layers, dielectric layers, solder masks, and/or other structures. The number of layers, layer thicknesses, and materials used to form the layers can be selected based on a wide variety of factors, which can vary with application. The laminate 141 can include vias for providing electrical connections to signal feeds and/or ground feeds of the antenna elements 151-166. For example, in certain implementations, vias can aid in providing electrical connections between signaling conditioning circuits of the IC 142 and corresponding antenna elements.


The module 140 can be included in a communication system, such as a mobile phone or base station. In one example, the module 140 is attached to a phone board of a mobile phone.



FIG. 7 is a schematic diagram of one embodiment of a mobile device 800. The mobile device 800 includes a baseband system 801, a transceiver 802, a front end system 803, antennas 804, a power management system 805, a memory 806, a user interface 807, and a battery 808.


The mobile device 800 can be used communicate using a wide variety of communications technologies, including, but not limited to, 2G, 3G, 4G (including LTE, LTE-Advanced, and LTE-Advanced Pro), 5G NR, WLAN (for instance, WiFi), WPAN (for instance, Bluetooth and ZigBee), WMAN (for instance, WiMax), and/or GPS technologies.


The transceiver 802 generates RF signals for transmission and processes incoming RF signals received from the antennas 804. It will be understood that various functionalities associated with the transmission and receiving of RF signals can be achieved by one or more components that are collectively represented in FIG. 7 as the transceiver 802. In one example, separate components (for instance, separate circuits or dies) can be provided for handling certain types of RF signals.


The front end system 803 aids in conditioning signals transmitted to and/or received from the antennas 804. In the illustrated embodiment, the front end system 803 includes antenna tuning circuitry 810, power amplifiers (PAs) 811, low noise amplifiers (LNAs) 812, filters 813, switches 814, and signal splitting/combining circuitry 815. However, other implementations are possible.


For example, the front end system 803 can provide a number of functionalities, including, but not limited to, amplifying signals for transmission, amplifying received signals, filtering signals, switching between different bands, switching between different power modes, switching between transmission and receiving modes, duplexing of signals, multiplexing of signals (for instance, diplexing or triplexing), or some combination thereof.


In certain implementations, the mobile device 800 supports carrier aggregation, thereby providing flexibility to increase peak data rates. Carrier aggregation can be used for both Frequency Division Duplexing (FDD) and Time Division Duplexing (TDD), and may be used to aggregate a plurality of carriers or channels. Carrier aggregation includes contiguous aggregation, in which contiguous carriers within the same operating frequency band are aggregated. Carrier aggregation can also be non-contiguous, and can include carriers separated in frequency within a common band or in different bands.


The antennas 804 can include antennas used for a wide variety of types of communications. For example, the antennas 804 can include antennas for transmitting and/or receiving signals associated with a wide variety of frequencies and communications standards.


In certain implementations, the antennas 804 support MIMO communications and/or switched diversity communications. For example, MIMO communications use multiple antennas for communicating multiple data streams over a single radio frequency channel. MIMO communications benefit from higher signal to noise ratio, improved coding, and/or reduced signal interference due to spatial multiplexing differences of the radio environment. Switched diversity refers to communications in which a particular antenna is selected for operation at a particular time. For example, a switch can be used to select a particular antenna from a group of antennas based on a variety of factors, such as an observed bit error rate and/or a signal strength indicator.


The mobile device 800 can operate with beamforming in certain implementations. For example, the front end system 803 can include amplifiers having controllable gain and phase shifters having controllable phase to provide beam formation and directivity for transmission and/or reception of signals using the antennas 804. For example, in the context of signal transmission, the amplitude and phases of the transmit signals provided to the antennas 804 are controlled such that radiated signals from the antennas 804 combine using constructive and destructive interference to generate an aggregate transmit signal exhibiting beam-like qualities with more signal strength propagating in a given direction. In the context of signal reception, the amplitude and phases are controlled such that more signal energy is received when the signal is arriving to the antennas 804 from a particular direction. In certain implementations, the antennas 804 include one or more arrays of antenna elements to enhance beamforming.


The baseband system 801 is coupled to the user interface 807 to facilitate processing of various user input and output (I/O), such as voice and data. The baseband system 801 provides the transceiver 802 with digital representations of transmit signals, which the transceiver 802 processes to generate RF signals for transmission. The baseband system 801 also processes digital representations of received signals provided by the transceiver 802. As shown in FIG. 7, the baseband system 801 is coupled to the memory 806 of facilitate operation of the mobile device 800.


The memory 806 can be used for a wide variety of purposes, such as storing data and/or instructions to facilitate the operation of the mobile device 800 and/or to provide storage of user information.


The power management system 805 provides a number of power management functions of the mobile device 800. In certain implementations, the power management system 805 includes a PA supply control circuit that controls the supply voltages of the power amplifiers 811. For example, the power management system 805 can be configured to change the supply voltage(s) provided to one or more of the power amplifiers 811 to improve efficiency, such as power added efficiency (PAE).


As shown in FIG. 7, the power management system 805 receives a battery voltage from the battery 808. The battery 808 can be any suitable battery for use in the mobile device 800, including, for example, a lithium-ion battery.



FIG. 8 is a schematic diagram of a power amplifier system 860 according to another embodiment. The illustrated power amplifier system 860 includes a baseband processor 841, a transmitter/observation receiver 842, a power amplifier (PA) 843, a directional coupler 844, front-end circuitry 845, an antenna 846, a PA bias control circuit 847, and a PA supply control circuit 848. The illustrated transmitter/observation receiver 842 includes an I/Q modulator 857, a mixer 858, and an analog-to-digital converter (ADC) 859. In certain implementations, the transmitter/observation receiver 842 is incorporated into a transceiver.


The baseband processor 841 can be used to generate an in-phase (I) signal and a quadrature-phase (Q) signal, which can be used to represent a sinusoidal wave or signal of a desired amplitude, frequency, and phase. For example, the I signal can be used to represent an in-phase component of the sinusoidal wave and the Q signal can be used to represent a quadrature-phase component of the sinusoidal wave, which can be an equivalent representation of the sinusoidal wave. In certain implementations, the I and Q signals can be provided to the I/Q modulator 857 in a digital format. The baseband processor 841 can be any suitable processor configured to process a baseband signal. For instance, the baseband processor 841 can include a digital signal processor, a microprocessor, a programmable core, or any combination thereof. Moreover, in some implementations, two or more baseband processors 841 can be included in the power amplifier system 860.


The I/Q modulator 857 can be configured to receive the I and Q signals from the baseband processor 841 and to process the I and Q signals to generate an RF signal. For example, the I/Q modulator 857 can include digital-to-analog converters (DACs) configured to convert the I and Q signals into an analog format, mixers for upconverting the I and Q signals to RF, and a signal combiner for combining the upconverted I and Q signals into an RF signal suitable for amplification by the power amplifier 843. In certain implementations, the I/Q modulator 857 can include one or more filters configured to filter frequency content of signals processed therein.


The power amplifier 843 can receive the RF signal from the I/Q modulator 857, and when enabled can provide an amplified RF signal to the antenna 846 via the front-end circuitry 845.


The front-end circuitry 845 can be implemented in a wide variety of ways. In one example, the front-end circuitry 845 includes one or more switches, filters, duplexers, multiplexers, and/or other components. In another example, the front-end circuitry 845 is omitted in favor of the power amplifier 843 providing the amplified RF signal directly to the antenna 846.


The directional coupler 844 senses an output signal of the power amplifier 823. Additionally, the sensed output signal from the directional coupler 844 is provided to the mixer 858, which multiplies the sensed output signal by a reference signal of a controlled frequency. The mixer 858 operates to generate a downshifted signal by downshifting the sensed output signal's frequency content. The downshifted signal can be provided to the ADC 859, which can convert the downshifted signal to a digital format suitable for processing by the baseband processor 841. Including a feedback path from the output of the power amplifier 843 to the baseband processor 841 can provide a number of advantages. For example, implementing the baseband processor 841 in this manner can aid in providing power control, compensating for transmitter impairments, and/or in performing digital pre-distortion (DPD). Although one example of a sensing path for a power amplifier is shown, other implementations are possible.


The PA supply control circuit 848 receives a power control signal from the baseband processor 841, and controls supply voltages of the power amplifier 843. In the illustrated configuration, the PA supply control circuit 848 generates a first supply voltage VCC1 for powering an input stage of the power amplifier 843 and a second supply voltage VCC2 for powering an output stage of the power amplifier 843. The PA supply control circuit 848 can control the voltage level of the first supply voltage VCC1 and/or the second supply voltage VCC2 to enhance the power amplifier system's PAE.


The PA supply control circuit 848 can employ various power management techniques to change the voltage level of one or more of the supply voltages over time to improve the power amplifier's power added efficiency (PAE), thereby reducing power dissipation.


One technique for improving efficiency of a power amplifier is average power tracking (APT), in which a DC-to-DC converter is used to generate a supply voltage for a power amplifier based on the power amplifier's average output power. Another technique for improving efficiency of a power amplifier is envelope tracking (ET), in which a supply voltage of the power amplifier is controlled in relation to the envelope of the RF signal. Thus, when a voltage level of the envelope of the RF signal increases the voltage level of the power amplifier's supply voltage can be increased. Likewise, when the voltage level of the envelope of the RF signal decreases the voltage level of the power amplifier's supply voltage can be decreased to reduce power consumption.


In certain configurations, the PA supply control circuit 848 is a multi-mode supply control circuit that can operate in multiple supply control modes including an APT mode and an ET mode. For example, the power control signal from the baseband processor 841 can instruct the PA supply control circuit 848 to operate in a particular supply control mode.


As shown in FIG. 8, the PA bias control circuit 847 receives a bias control signal from the baseband processor 841, and generates bias control signals for the power amplifier 843. In the illustrated configuration, the bias control circuit 847 generates bias control signals for both an input stage of the power amplifier 843 and an output stage of the power amplifier 843. However, other implementations are possible.


Applications


Some of the embodiments described above have provided examples in connection with wireless devices or mobile phones. However, the principles and advantages of the embodiments can be used for any other systems or apparatus that have needs for antenna systems.


Such antenna systems can be implemented in various electronic devices. Examples of the electronic devices can include, but are not limited to, consumer electronic products, parts of the consumer electronic products, electronic test equipment, etc. Examples of the electronic devices can also include, but are not limited to, memory chips, memory modules, circuits of optical networks or other communication networks, and disk driver circuits. The consumer electronic products can include, but are not limited to, a mobile phone, a telephone, a television, a computer monitor, a computer, a hand-held computer, a personal digital assistant (PDA), a microwave, a refrigerator, an automobile, a stereo system, a cassette recorder or player, a DVD player, a CD player, a VCR, an MP3 player, a radio, a camcorder, a camera, a digital camera, a portable memory chip, a washer, a dryer, a washer/dryer, a copier, a facsimile machine, a scanner, a multi-functional peripheral device, a wrist watch, a clock, etc. Further, the electronic devices can include unfinished products.


CONCLUSION

Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” The word “coupled”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Likewise, the word “connected”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


Moreover, conditional language used herein, such as, among others, “may,” “could,” “might,” “can,” “e.g.,” “for example,” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.


The above detailed description of embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.


The teachings of the invention provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.


While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.

Claims
  • 1. A mobile device comprising: a front end system including a first radio frequency signal conditioning circuit configured to condition a first radio frequency signal of a first frequency, and a plurality of second radio frequency signal conditioning circuits configured to condition a plurality of second radio frequency signals of a second frequency that is greater than the first frequency; andan antenna structure including a plurality of switches operable in a first mode and a second mode, and an antenna array of including a plurality of antenna elements interconnect by the plurality of switches, the antenna array operable to handle the first radio frequency signal in the first mode, and to handle the plurality of second radio frequency signals in the second mode, the plurality of switches configured to join the plurality of antenna elements in the first mode to collectively operate the plurality of antenna elements as a planar inverted F antenna, and the plurality of switches configured to open in the second mode to operate the plurality of antenna elements as an array of antenna elements that provides beamforming.
  • 2. The mobile device of claim 1 wherein the plurality of antenna elements correspond to a plurality of patch antennas.
  • 3. The mobile device of claim 1 wherein each of the plurality of switches is closed in the first mode and open in the second mode.
  • 4. The antenna system of claim 1 wherein the first frequency is in fifth generation frequency range one and the second frequency is in fifth generation frequency range two.
  • 5. The mobile device of claim 1 wherein the first radio frequency signal conditioning circuit includes a power amplifier configured to output the first radio frequency signal, and the plurality of second radio frequency signal conditioning circuits include a plurality of power amplifiers configured to output the plurality of second radio frequency signals.
  • 6. The mobile device of claim 1 wherein the first radio frequency signal conditioning circuit includes a low noise amplifier configured to receive the first radio frequency signal, and the plurality of second radio frequency signal conditioning circuits include a plurality of low noise amplifiers configured to receive the plurality of second radio frequency signals.
  • 7. The mobile device of claim 1 wherein the plurality of second radio frequency signal conditioning circuits are configured to adjust a gain and a phase of the plurality of second radio frequency signals to provide beamforming.
  • 8. An antenna system comprising: a first radio frequency signal conditioning circuit configured to condition a first radio frequency signal of a first frequency;a plurality of second radio frequency signal conditioning circuits configured to condition a plurality of second radio frequency signals of a second frequency that is greater than the first frequency;a plurality of switches operable in a first mode and a second mode; andan antenna array of including a plurality of antenna elements interconnect by the plurality of switches, the antenna array operable to handle the first radio frequency signal in the first mode, and to handle the plurality of second radio frequency signals in the second mode, the plurality of switches configured to join the plurality of antenna elements in the first mode to collectively operate the plurality of antenna elements as a planar inverted F antenna, and the plurality of switches configured to open in the second mode to operate the plurality of antenna elements as an array of antenna elements that provides beamforming.
  • 9. The antenna system of claim 8 wherein the plurality of antenna elements correspond to a plurality of patch antennas.
  • 10. The antenna system of claim 8 wherein each of the plurality of switches is closed in the first mode and open in the second mode.
  • 11. The antenna system of claim 8 wherein the first frequency is in fifth generation frequency range one and the second frequency is in fifth generation frequency range two.
  • 12. The antenna system of claim 8 wherein the first radio frequency signal conditioning circuit includes a power amplifier configured to output the first radio frequency signal, and the plurality of second radio frequency signal conditioning circuits include a plurality of power amplifiers configured to output the plurality of second radio frequency signals.
  • 13. The antenna system of claim 8 wherein the first radio frequency signal conditioning circuit includes a low noise amplifier configured to receive the first radio frequency signal, and the plurality of second radio frequency signal conditioning circuits include a plurality of low noise amplifiers configured to receive the plurality of second radio frequency signals.
  • 14. The antenna system of claim 8 wherein the plurality of second radio frequency signal conditioning circuits are configured to adjust a gain and a phase of the plurality of second radio frequency signals to provide beamforming.
  • 15. A method of signal communication in a mobile device, the method comprising: conditioning a first radio frequency signal of a first frequency using a first radio frequency signal conditioning circuit of a front end system;conditioning a plurality of second radio frequency signals of a second frequency that is greater than the first frequency using a plurality of second radio frequency signal conditioning circuits of the front end system;controlling a plurality of switches that interconnect a plurality of antenna elements of an antenna array, including operating the plurality of switches in a first mode in which the antenna array handles the first radio frequency signal, and operating the plurality of switches in a second mode in which the antenna array handles the plurality of second radio frequency signals;joining the plurality of antenna elements using the plurality of switches in the first mode to collectively operate the plurality of antenna elements as a planar inverted F antenna; andopening the plurality of switches in the second mode to operate the plurality of antenna elements as an array of antenna elements that provides beamforming.
  • 16. The method of claim 15 further comprising closing each of the plurality of switches in the first mode and opening each of the plurality of switches in the second mode.
  • 17. The method of claim 15 wherein the first frequency is in fifth generation frequency range one and the second range is in fifth generation frequency range two.
  • 18. The method of claim 15 further comprising using the plurality of second radio frequency signal conditioning circuits to provide a gain and a phase adjustment to the plurality of second radio frequency signals to provide beamforming.
  • 19. The method of claim 15 wherein the plurality of antenna elements correspond to a plurality of patch antennas.
  • 20. The method of claim 15 further comprising receiving data for controlling the plurality of switches over an interface.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Patent Application No. 63/200,809, filed Mar. 30, 2021 and titled “FREQUENCY RANGE TWO ANTENNA ARRAY WITH SWITCHES FOR JOINING ANTENNAS FOR FREQUENCY RANGE ONE COMMUNICATIONS,” which is herein incorporated by reference in its entirety.

US Referenced Citations (177)
Number Name Date Kind
2350916 Morrison Jun 1944 A
3016531 Kiyo et al. Jan 1962 A
3568197 Cubley Mar 1971 A
3670275 Kalliomaki et al. Jun 1972 A
3699574 O'hara et al. Oct 1972 A
3713158 Burnham Jan 1973 A
3836970 Reitzig Sep 1974 A
3925784 Phelan Dec 1975 A
3955201 Crump May 1976 A
4010474 Provencher Mar 1977 A
4021813 Black et al. May 1977 A
4223310 Davidson et al. Sep 1980 A
4237464 Rittenbach Dec 1980 A
4257047 Lipsky Mar 1981 A
4297705 Boothe Oct 1981 A
4472719 Hills Sep 1984 A
4625211 Searle et al. Nov 1986 A
4686533 Macdonald et al. Aug 1987 A
4833478 Nossen May 1989 A
4845507 Archer et al. Jul 1989 A
4855748 Brandao et al. Aug 1989 A
4885592 Kofol et al. Dec 1989 A
5017927 Agrawal et al. May 1991 A
5025493 Cook, Jr. Jun 1991 A
5105200 Koepf Apr 1992 A
5144320 Stern et al. Sep 1992 A
5198823 Litchford et al. Mar 1993 A
5243354 Stern et al. Sep 1993 A
5374935 Forrest Dec 1994 A
5479176 Zavrel, Jr. Dec 1995 A
5541614 Lam et al. Jul 1996 A
5642122 Lockie et al. Jun 1997 A
5734354 Twelves Mar 1998 A
5771017 Dean et al. Jun 1998 A
5920809 Clarke Jul 1999 A
5995062 Denney et al. Nov 1999 A
6005530 Jovanovich et al. Dec 1999 A
6078288 Adams et al. Jun 2000 A
6175723 Rothwell, III Jan 2001 B1
6184827 Dendy et al. Feb 2001 B1
6191754 Nathanson et al. Feb 2001 B1
6198438 Herd Mar 2001 B1
6208293 Adams et al. Mar 2001 B1
6384797 Schnaffner et al. May 2002 B1
6388631 Livingston et al. May 2002 B1
6404386 Proctor, Jr. et al. Jun 2002 B1
6417807 Hsu et al. Jul 2002 B1
6453176 Lopes et al. Sep 2002 B1
6469677 Schaffner et al. Oct 2002 B1
6496140 Alastalo Dec 2002 B1
6542119 Howell et al. Apr 2003 B2
6650702 Steele Nov 2003 B1
6661378 Bloy Dec 2003 B2
6670921 Sievenpiper et al. Dec 2003 B2
6696954 Chung Feb 2004 B2
6768456 Lalezari et al. Jul 2004 B1
6771218 Lalezari et al. Aug 2004 B1
6774844 Subotic et al. Aug 2004 B2
6781544 Saliga et al. Aug 2004 B2
6825815 Harmon Nov 2004 B1
6882312 Vorobiev Apr 2005 B1
6888505 Tran May 2005 B2
6897806 Toshev May 2005 B2
6961025 Chethik et al. Nov 2005 B1
6965349 Livingston et al. Nov 2005 B2
6989788 Marion et al. Jan 2006 B2
7062246 Owen Jun 2006 B2
7102586 Liang et al. Sep 2006 B2
7151791 Yi Dec 2006 B2
7196668 Lin et al. Mar 2007 B2
7215284 Collinson May 2007 B2
7295254 Bemdpv Nov 2007 B2
7372402 Numminen May 2008 B2
7508343 Maloratsky et al. Mar 2009 B1
7692602 Wu et al. Apr 2010 B2
7696946 Shtrom Apr 2010 B2
7796702 Li Sep 2010 B2
7881753 Rofougaran Feb 2011 B2
8031116 Lee et al. Oct 2011 B1
8070065 Overhultz et al. Dec 2011 B2
8284721 Chen et al. Oct 2012 B2
8295382 Xu et al. Oct 2012 B2
8340612 Schlee Dec 2012 B2
8351849 Ying Jan 2013 B2
8369436 Stirling-Gallacher Feb 2013 B2
8374260 Schirmacher et al. Feb 2013 B2
8385844 Nandagopalan et al. Feb 2013 B2
8405548 Hull, Jr. et al. Mar 2013 B2
8570223 Arslan et al. Oct 2013 B2
8577416 Nandagopalan et al. Nov 2013 B2
8611455 Stirling-Gallacher Dec 2013 B2
8688056 Chen et al. Apr 2014 B2
8781420 Schlub et al. Jul 2014 B2
8854257 Hamner et al. Oct 2014 B2
9000982 Chethik et al. Apr 2015 B2
9035821 Feil May 2015 B2
9035828 O'Keeffe et al. May 2015 B2
9071336 Schlub et al. Jun 2015 B2
9082307 Sharawi et al. Jul 2015 B2
9179299 Schlub et al. Nov 2015 B2
9196959 Doane et al. Nov 2015 B1
9306610 Kenington Apr 2016 B2
9363004 Kis et al. Jun 2016 B2
9543648 Cheng et al. Jan 2017 B2
9608324 Lin et al. Mar 2017 B2
9692126 Sharawi Jun 2017 B2
9705183 Nikitin Jul 2017 B2
9705611 West Jul 2017 B1
9793605 Desclos et al. Oct 2017 B1
9905923 Redit Feb 2018 B2
10033098 Schoor Jul 2018 B2
10084233 Desclos et al. Sep 2018 B2
10098018 Lysejko et al. Oct 2018 B2
10200097 Kim et al. Feb 2019 B2
10270185 Boutayeb et al. Apr 2019 B2
10283871 Gong et al. May 2019 B2
10361482 McCarthy et al. Jul 2019 B2
10374309 Sharawi Aug 2019 B2
10411349 Black et al. Sep 2019 B2
10418714 Liao et al. Sep 2019 B2
10439684 Safavi et al. Oct 2019 B2
10505274 Deslcos et al. Dec 2019 B2
10516210 Yao et al. Dec 2019 B2
10598778 Yao et al. Mar 2020 B2
10608334 Schuehler et al. Mar 2020 B2
10644395 Walker et al. May 2020 B2
10763592 Petersson et al. Sep 2020 B2
10763594 Lin et al. Sep 2020 B1
10763941 Cai et al. Sep 2020 B2
10771143 Wen et al. Sep 2020 B1
10790584 Neinhues Sep 2020 B2
10819448 Raghavan et al. Oct 2020 B2
10862196 Haridas et al. Dec 2020 B2
10942262 Tedeschi et al. Mar 2021 B2
10971799 Lee et al. Apr 2021 B2
10985445 Nikitin Apr 2021 B2
11013009 Chukka et al. May 2021 B1
11024961 Anderson et al. Jun 2021 B2
11063354 Jan et al. Jul 2021 B2
11069965 Wang et al. Jul 2021 B2
11128035 Driscoll et al. Sep 2021 B2
11133583 McCarthy et al. Sep 2021 B2
11165152 Wang et al. Nov 2021 B2
11211719 Petersson et al. Dec 2021 B2
11218201 Sahoo et al. Jan 2022 B2
11239572 Hu et al. Feb 2022 B2
11264731 Zhu et al. Mar 2022 B2
11349208 Abdalla et al. May 2022 B2
11349539 Orhan et al. May 2022 B2
20030052818 Subotic Mar 2003 A1
20030076271 Borlez et al. Apr 2003 A1
20040185793 Borlez et al. Sep 2004 A1
20040263387 Lalezari et al. Dec 2004 A1
20060105730 Modonesi et al. May 2006 A1
20060166628 Anttila Jul 2006 A1
20080150800 Tsuji Jun 2008 A1
20100272151 Nandagopalan et al. Oct 2010 A1
20110032159 Wu et al. Feb 2011 A1
20110159833 Kenington Jun 2011 A1
20160064819 Tabatabai et al. Mar 2016 A1
20190044227 Harden Feb 2019 A1
20200003884 Arkind et al. Jan 2020 A1
20200303837 Anderson Sep 2020 A1
20200309836 Santoyo-mejia et al. Oct 2020 A1
20200388914 Ke Dec 2020 A1
20210119346 Sur et al. Apr 2021 A1
20210119347 Petersson et al. Apr 2021 A1
20210249770 Anderson et al. Aug 2021 A1
20210255297 Tedeschi et al. Aug 2021 A1
20210288404 Bauman Sep 2021 A1
20210313669 Ananth et al. Oct 2021 A1
20210337530 Raghavan et al. Oct 2021 A1
20210367354 Hao et al. Nov 2021 A1
20210408697 Rubin et al. Dec 2021 A1
20220013924 Nilsson Jan 2022 A1
20220085491 Stoleru Mar 2022 A1
20220190482 Yang et al. Jun 2022 A1
Related Publications (1)
Number Date Country
20220320751 A1 Oct 2022 US
Provisional Applications (1)
Number Date Country
63200809 Mar 2021 US