1. Field of the Invention
The present invention relates generally to personal audio devices such as wireless telephones that include adaptive noise cancellation (ANC), and more specifically, to control of ANC in a personal audio device that uses injected noise having a frequency-shaped noise-based adaptation of a secondary path estimate.
2. Background of the Invention
Wireless telephones, such as mobile/cellular telephones, headphones, and other consumer audio devices are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise canceling using a microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.
Noise canceling operation can be improved by measuring the transducer output of a device at the transducer to determine the effectiveness of the noise canceling using an error microphone. The measured output of the transducer is ideally the source audio, e.g., the audio provided to a headset for reproduction, or downlink audio in a telephone and/or playback audio in either a dedicated audio player or a telephone, since the noise canceling signal(s) are ideally canceled by the ambient noise at the location of the transducer. To remove the source audio from the error microphone signal, the secondary path from the transducer through the error microphone can be estimated and used to filter the source audio to the correct phase and amplitude for subtraction from the error microphone signal. However, when source audio is absent or low in amplitude, the secondary path estimate cannot typically be updated.
Therefore, it would be desirable to provide a personal audio device, including wireless telephones, that provides noise cancellation using a secondary path estimate to measure the output of the transducer and that can continuously adapt the secondary path estimate independent of whether source audio of sufficient amplitude is present.
The above-stated objective of providing a personal audio device providing noise cancelling including a secondary path estimate that can be adapted continuously whether or not source audio of sufficient amplitude is present, is accomplished in a noise-canceling personal audio device, including noise-canceling headphones, a method of operation, and an integrated circuit.
The personal audio device includes a housing, with a transducer mounted on the housing for reproducing an audio signal that includes both source audio for providing to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer. A reference microphone is mounted on the housing to provide a reference microphone signal indicative of the ambient audio sounds. The personal audio device further includes an adaptive noise-canceling (ANC) processing circuit within the housing for adaptively generating an anti-noise signal from the reference microphone signal such that the anti-noise signal causes substantial cancellation of the ambient audio sounds. An error microphone is included for controlling the adaptation of the anti-noise signal to cancel the ambient audio sounds and for correcting for the electro-acoustical path from the output of the processing circuit through the transducer. The ANC processing circuit injects noise when the source audio, e.g., downlink audio in telephones and/or playback audio in media players or telephones, is at such a low level that the secondary path estimating adaptive filter cannot properly continue adaptation. A controllable filter frequency-shapes the noise in conformity with at least one parameter of the secondary path response, so that audibility of the noise output by the transducer is reduced, while providing noise of sufficient amplitude for adapting the secondary path response.
The foregoing and other objectives, features, and advantages of the invention will be apparent from the following, more particular, description of the preferred embodiment of the invention, as illustrated in the accompanying drawings.
The present disclosure reveals noise canceling techniques and circuits that can be implemented in a personal audio device, such as wireless headphones or a wireless telephone. The personal audio device includes an adaptive noise canceling (ANC) circuit that measures the ambient acoustic environment and generates a signal that is injected into the speaker (or other transducer) output to cancel ambient acoustic events. A reference microphone is provided to measure the ambient acoustic environment, and an error microphone is included to measure the ambient audio and transducer output at the transducer, thus giving an indication of the effectiveness of the noise cancelation. A secondary path estimating adaptive filter is used to remove the playback audio from the error microphone signal, in order to generate an error signal. However, depending on the presence (and level) of the audio signal reproduced by the personal audio device, e.g., downlink audio during a telephone conversation or playback audio from a media file/connection, the secondary path adaptive filter may not be able to continue to adapt to estimate the secondary path. The circuits and methods disclosed herein use injected noise to provide enough energy for the secondary path estimating adaptive filter to continue to adapt, while remaining at a level that is less noticeable or unnoticeable to the listener.
The spectrum of the injected noise is altered by adapting a noise shaping filter that shapes the frequency spectrum of the noise in conformity with the frequency content of the error signal that represents the output of the transducer as heard by the listener with the playback audio (and thus also the injected noise) removed. The injected noise is also controlled in conformity with at least one parameter of the secondary path response, e.g., the gain and/or higher-order coefficients of the secondary path response. The result is that the amplitude of the injected noise will track the residual ambient noise as heard by the listener in different frequency bands, so that the secondary path estimating adaptive filter can be effectively trained, while maintaining the injected noise at an imperceptible level.
Wireless telephone 10 includes adaptive noise canceling (ANC) circuits and features that inject an anti-noise signal into speakers SPKR1, SPKR2 to improve intelligibility of the distant speech and other audio reproduced by speakers SPKR1, SPKR2. An exemplary circuit 14 within wireless telephone 10 includes an audio integrated circuit 20 that receives the signals from reference microphones R1, R2, a near speech microphone NS, and error microphones E1, E2 and interfaces with other integrated circuits such as a radio frequency (RF) integrated circuit 12 containing the wireless telephone transceiver. In other implementations, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. Alternatively, the ANC circuits may be included within a housing of earbuds EB1, EB2 or in a module located along wired connections between wireless telephone 10 and earbuds EB1, EB2. In other embodiments, wireless telephone 10 includes a reference microphone, error microphone and speaker and the noise-canceling is performed by an integrated circuit within wireless telephone 10. For the purposes of illustration, the ANC circuits will be described as provided within wireless telephone 10, but the above variations are understandable by a person of ordinary skill in the art and the consequent signals that are required between earbuds EB1, EB2, wireless telephone 10, and a third module, if required, can be easily determined for those variations. A near speech microphone NS is provided at a housing of wireless telephone 10 to capture near-end speech, which is transmitted from wireless telephone 10 to the other conversation participant(s). Alternatively, near speech microphone NS may be provided on the outer surface of a housing of one of earbuds EB1, EB2, on a boom affixed to one of earbuds EB1, EB2, or on a pendant located between wireless telephone 10 and either or both of earbuds EB1, EB2.
In general, the ANC techniques illustrated herein measure ambient acoustic events (as opposed to the output of speakers SPKR1, SPKR2 and/or the near-end speech) impinging on reference microphones R1, R2 and also measure the same ambient acoustic events impinging on error microphones E1, E2. The ANC processing circuits of integrated circuits 20A, 20B individually adapt an anti-noise signal generated from the output of the corresponding reference microphone R1, R2 to have a characteristic that minimizes the amplitude of the ambient acoustic events at the corresponding error microphone E1, E2. Since acoustic path P1(z) extends from reference microphone R1 to error microphone E1, the ANC circuit in audio integrated circuit 20A is essentially estimating acoustic path P1(z) combined with removing effects of an electro-acoustic path S1(z) that represents the response of the audio output circuits of audio integrated circuit 20A and the acoustic/electric transfer function of speaker SPKR1. The estimated response includes the coupling between speaker SPKR1 and error microphone E1 in the particular acoustic environment which is affected by the proximity and structure of ear 5A and other physical objects and human head structures that may be in proximity to earbud EB1. Similarly, audio integrated circuit 20B estimates acoustic path P2(z) combined with removing effects of an electro-acoustic path S2(z) that represents the response of the audio output circuits of audio integrated circuit 20B and the acoustic/electric transfer function of speaker SPKR2.
Referring now to
Audio integrated circuit 20A includes an analog-to-digital converter (ADC) 21A for receiving the reference microphone signal from reference microphone R1 and generating a digital representation ref of the reference microphone signal. Audio integrated circuit 20A also includes an ADC 21B for receiving the error microphone signal from error microphone E1 and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near speech microphone signal from near speech microphone NS and generating a digital representation of near speech microphone signal ns. (Audio integrated circuit 20B receives the digital representation of near speech microphone signal ns from audio integrated circuit 20A via the wireless or wired connections as described above.) Audio integrated circuit 20A generates an output for driving speaker SPKR1 from an amplifier A1, which amplifies the output of a digital-to-analog converter (DAC) 23 that receives the output of a combiner 26. Combiner 26 combines audio signals ia from internal audio sources 24, and the anti-noise signal anti-noise generated by an ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and is therefore subtracted by combiner 26. Combiner 26 also combines an attenuated portion of near speech signal ns, i.e., sidetone information st, so that the user of wireless telephone 10 hears their own voice in proper relation to downlink speech ds, which is received from a radio frequency (RF) integrated circuit 22. Near speech signal ns is also provided to RF integrated circuit 22 and is transmitted as uplink speech to the service provider via an antenna ANT.
Referring now to
To implement the above, adaptive filter 34A has coefficients controlled by a SE coefficient control block 33, which processes the source audio (ds+ia) and error microphone signal err after removal, by a combiner 36, of the above-described filtered downlink audio signal ds and internal audio ia, that has been filtered by adaptive filter 34A to represent the expected source audio delivered to error microphone E. Adaptive filter 34A is thereby adapted to generate a signal from downlink audio signal ds and internal audio ia, that when subtracted from error microphone signal err, contains the content of error microphone signal err that is not due to source audio (ds+ia). However, if downlink audio signal ds and internal audio ia are both absent, or have very low amplitude, SE coefficient control block 33 will not have sufficient input to estimate acoustic path S(z). Therefore, in ANC circuit 30, a source audio detector 35 detects whether sufficient source audio (ds+ia) is present, and updates the secondary path estimate if sufficient source audio (ds+ia) is present. Source audio detector 35 may be replaced by a speech presence signal if such is available from a digital source of the downlink audio signal ds, or a playback active signal provided from media playback control circuits. A selector 38 selects the output of a frequency-shaped noise generator 40 if source audio (ds+ia) is absent or low in amplitude, which provides output ds+ia/noise to combiner 26 of
When source audio (ds+ia) is absent, speaker SPKR of
Referring now to
Referring now to
P(k,n)=atP(k,n−1)+(1−at)|e(k)|2,
where P(k, n) is the computed PSD of error signal e, at is a time-domain smoothing coefficient and k is a frequency bin number corresponding to the FFT coefficient. The time-domain smoothed PSD is smoothed in the frequency domain (step 53) by a frequency-smoothing algorithm controlled by control value PSD_SMOOTH. An example frequency smoothing algorithm may smooth the PSD spectrum from a lowest-frequency bin and proceeding to a highest-frequency bin, as in the following equation,
P′(k+1)=afP′(k)+(1−af)P(k+1)
Where P is the PSD of error signal after time-domain smoothing, P′ is the PSD of error signal e after frequency-domain smoothing, k denotes the frequency bin and af is a frequency-domain smoothing coefficient. After smoothing in the frequency domain by increasing frequency bin, the PSD of error signal e is smoothed starting from the highest-frequency bin and ending at the lowest-frequency bin as exemplified by the following equation:
P″(k−1)=afP″(k)+(1−af)P′(k−1),
where P″(k) is the final frequency-smoothed PSD result for bin k. The smoothing performed in steps 52-53 ensures that abrupt changes and narrowband frequency spikes due to narrowband signals present in error signal e are removed from the resulting processed PSD.
Once frequency smoothing is complete, the time- and frequency-smoothed PSD is altered according to at least one coefficient of an estimated secondary-path response as determined by coefficients of secondary-path adaptive filter 34A of
{circumflex over (P)}(k)=P″(k)·CSE_inv(k)
The gain of response SE(z) is also compensated for by multiplying the SE-compensated PSD {circumflex over (P)}(k) by a gain factor GSE_gain_inv:
{tilde over (P)}(k)={circumflex over (P)}(k)·GSE_gain_inv
Next a predetermined parametric equalization is applied according to control values EQ_0-EQ_8 (step 55), which can simplify the design of the finite impulse response (FIR) filter used to implement noise-shaping filter 43, and compression is applied to the equalized noise in order to limit the dynamic range of the resulting PSD according to a control value DYNAMIC_RANGE (step 56). The resulting processed PSD of error signal e is used as the target frequency response for noise-shaping filter 43, which in the depicted embodiment is a FIR filter controlled by coefficient control 42 according to the output of FFT block 41 (step 57). The amplitude of the frequency response of the FIR filter used to implement noise-shaping filter 43 is given by:
A(k)=√{square root over (
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form, and details may be made therein without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4020567 | Webster | May 1977 | A |
4926464 | Schley-May | May 1990 | A |
4998241 | Brox et al. | Mar 1991 | A |
5018202 | Takahashi | May 1991 | A |
5021753 | Chapman | Jun 1991 | A |
5044373 | Northeved et al. | Sep 1991 | A |
5251263 | Andrea et al. | Oct 1993 | A |
5278913 | Delfosse et al. | Jan 1994 | A |
5321759 | Yuan | Jun 1994 | A |
5337365 | Hamabe et al. | Aug 1994 | A |
5359662 | Yuan et al. | Oct 1994 | A |
5386477 | Popovich et al. | Jan 1995 | A |
5410605 | Sawada et al. | Apr 1995 | A |
5425105 | Lo et al. | Jun 1995 | A |
5445517 | Kondou et al. | Aug 1995 | A |
5465413 | Enge et al. | Nov 1995 | A |
5481615 | Eatwell et al. | Jan 1996 | A |
5548681 | Gleaves et al. | Aug 1996 | A |
5550925 | Hori et al. | Aug 1996 | A |
5559893 | Krokstad et al. | Sep 1996 | A |
5586190 | Trantow et al. | Dec 1996 | A |
5640450 | Watanabe | Jun 1997 | A |
5668747 | Ohashi | Sep 1997 | A |
5687075 | Stothers | Nov 1997 | A |
5696831 | Inanaga et al. | Dec 1997 | A |
5699437 | Finn | Dec 1997 | A |
5706344 | Finn | Jan 1998 | A |
5740256 | Castello Da Costa et al. | Apr 1998 | A |
5768124 | Stothers et al. | Jun 1998 | A |
5815582 | Claybaugh et al. | Sep 1998 | A |
5832095 | Daniels | Nov 1998 | A |
5852667 | Pan et al. | Dec 1998 | A |
5909498 | Smith | Jun 1999 | A |
5940519 | Kuo | Aug 1999 | A |
5946391 | Dragwidge et al. | Aug 1999 | A |
5991418 | Kuo | Nov 1999 | A |
6041126 | Terai et al. | Mar 2000 | A |
6118878 | Jones | Sep 2000 | A |
6181801 | Puthuff et al. | Jan 2001 | B1 |
6219427 | Kates et al. | Apr 2001 | B1 |
6278786 | McIntosh | Aug 2001 | B1 |
6282176 | Hemkumar | Aug 2001 | B1 |
6304179 | Lotito et al. | Oct 2001 | B1 |
6418228 | Terai et al. | Jul 2002 | B1 |
6434246 | Kates et al. | Aug 2002 | B1 |
6434247 | Kates et al. | Aug 2002 | B1 |
6445799 | Taenzer et al. | Sep 2002 | B1 |
6522746 | Marchok et al. | Feb 2003 | B1 |
6542436 | Myllyla | Apr 2003 | B1 |
6650701 | Hsiang et al. | Nov 2003 | B1 |
6683960 | Fujii et al. | Jan 2004 | B1 |
6738482 | Jaber | May 2004 | B1 |
6766292 | Chandran | Jul 2004 | B1 |
6768795 | Feltstrom et al. | Jul 2004 | B2 |
6792107 | Tucker et al. | Sep 2004 | B2 |
6850617 | Weigand | Feb 2005 | B1 |
6940982 | Watkins | Sep 2005 | B1 |
7016504 | Shennib | Mar 2006 | B1 |
7058463 | Ruha et al. | Jun 2006 | B1 |
7103188 | Jones | Sep 2006 | B1 |
7181030 | Rasmussen et al. | Feb 2007 | B2 |
7330739 | Somayajula | Feb 2008 | B2 |
7365669 | Melanson | Apr 2008 | B1 |
7466838 | Mosely | Dec 2008 | B1 |
7680456 | Muhammad et al. | Mar 2010 | B2 |
7742746 | Xiang et al. | Jun 2010 | B2 |
7742790 | Konchitsky et al. | Jun 2010 | B2 |
7817808 | Konchitsky et al. | Oct 2010 | B2 |
7953231 | Ishida | May 2011 | B2 |
8019050 | Mactavish et al. | Sep 2011 | B2 |
D666169 | Tucker et al. | Aug 2012 | S |
8249262 | Chua et al. | Aug 2012 | B2 |
8251903 | LeBoeuf et al. | Aug 2012 | B2 |
8290537 | Lee et al. | Oct 2012 | B2 |
8325934 | Kuo | Dec 2012 | B2 |
8331604 | Saito et al. | Dec 2012 | B2 |
8379884 | Horibe et al. | Feb 2013 | B2 |
8401200 | Tiscareno et al. | Mar 2013 | B2 |
8442251 | Jensen et al. | May 2013 | B2 |
8559661 | Tanghe | Oct 2013 | B2 |
8600085 | Chen et al. | Dec 2013 | B2 |
8775172 | Konchitsky et al. | Jul 2014 | B2 |
8804974 | Melanson | Aug 2014 | B1 |
8831239 | Bakalos | Sep 2014 | B2 |
8842848 | Donaldson et al. | Sep 2014 | B2 |
8855330 | Taenzer | Oct 2014 | B2 |
8908877 | Abdollahzadeh Milani et al. | Dec 2014 | B2 |
9066176 | Hendrix et al. | Jun 2015 | B2 |
9071724 | Do et al. | Jun 2015 | B2 |
9129586 | Bajic et al. | Sep 2015 | B2 |
20010053228 | Jones | Dec 2001 | A1 |
20020003887 | Zhang et al. | Jan 2002 | A1 |
20030063759 | Brennan et al. | Apr 2003 | A1 |
20030072439 | Gupta | Apr 2003 | A1 |
20030185403 | Sibbald | Oct 2003 | A1 |
20040047464 | Yu et al. | Mar 2004 | A1 |
20040120535 | Woods | Jun 2004 | A1 |
20040165736 | Hetherington et al. | Aug 2004 | A1 |
20040167777 | Hetherington et al. | Aug 2004 | A1 |
20040202333 | Csermak et al. | Oct 2004 | A1 |
20040240677 | Onishi et al. | Dec 2004 | A1 |
20040242160 | Ichikawa et al. | Dec 2004 | A1 |
20040264706 | Ray et al. | Dec 2004 | A1 |
20050004796 | Trump et al. | Jan 2005 | A1 |
20050018862 | Fisher | Jan 2005 | A1 |
20050117754 | Sakawaki | Jun 2005 | A1 |
20050207585 | Christoph | Sep 2005 | A1 |
20050240401 | Ebenezer | Oct 2005 | A1 |
20060035593 | Leeds | Feb 2006 | A1 |
20060055910 | Lee | Mar 2006 | A1 |
20060069556 | Nadjar et al. | Mar 2006 | A1 |
20060153400 | Fujita et al. | Jul 2006 | A1 |
20060159282 | Borsch | Jul 2006 | A1 |
20060161428 | Fouret | Jul 2006 | A1 |
20060251266 | Saunders et al. | Nov 2006 | A1 |
20070030989 | Kates | Feb 2007 | A1 |
20070033029 | Sakawaki | Feb 2007 | A1 |
20070038441 | Inoue et al. | Feb 2007 | A1 |
20070047742 | Taenzer et al. | Mar 2007 | A1 |
20070053524 | Haulick et al. | Mar 2007 | A1 |
20070076896 | Hosaka et al. | Apr 2007 | A1 |
20070154031 | Avendano et al. | Jul 2007 | A1 |
20070258597 | Rasmussen et al. | Nov 2007 | A1 |
20070297620 | Choy | Dec 2007 | A1 |
20080019548 | Avendano | Jan 2008 | A1 |
20080101589 | Horowitz et al. | May 2008 | A1 |
20080107281 | Togami et al. | May 2008 | A1 |
20080144853 | Sommerfeldt et al. | Jun 2008 | A1 |
20080177532 | Greiss et al. | Jul 2008 | A1 |
20080181422 | Christoph | Jul 2008 | A1 |
20080226098 | Haulick et al. | Sep 2008 | A1 |
20080240413 | Mohammad et al. | Oct 2008 | A1 |
20080240455 | Inoue et al. | Oct 2008 | A1 |
20080240457 | Inoue et al. | Oct 2008 | A1 |
20080269926 | Xiang et al. | Oct 2008 | A1 |
20090012783 | Klein | Jan 2009 | A1 |
20090034748 | Sibbald | Feb 2009 | A1 |
20090041260 | Jorgensen et al. | Feb 2009 | A1 |
20090046867 | Clemow | Feb 2009 | A1 |
20090060222 | Jeong et al. | Mar 2009 | A1 |
20090080670 | Solbeck et al. | Mar 2009 | A1 |
20090086990 | Christoph | Apr 2009 | A1 |
20090175466 | Elko et al. | Jul 2009 | A1 |
20090196429 | Ramakrishnan et al. | Aug 2009 | A1 |
20090220107 | Every et al. | Sep 2009 | A1 |
20090238369 | Ramakrishnan et al. | Sep 2009 | A1 |
20090245529 | Asada et al. | Oct 2009 | A1 |
20090254340 | Sun et al. | Oct 2009 | A1 |
20090290718 | Kahn et al. | Nov 2009 | A1 |
20090296965 | Kojima | Dec 2009 | A1 |
20090304200 | Kim et al. | Dec 2009 | A1 |
20090311979 | Husted et al. | Dec 2009 | A1 |
20100002891 | Shiraishi et al. | Jan 2010 | A1 |
20100014683 | Maeda et al. | Jan 2010 | A1 |
20100014685 | Wurm | Jan 2010 | A1 |
20100061564 | Clemow et al. | Mar 2010 | A1 |
20100069114 | Lee et al. | Mar 2010 | A1 |
20100082339 | Konchitsky et al. | Apr 2010 | A1 |
20100098263 | Pan et al. | Apr 2010 | A1 |
20100098265 | Pan et al. | Apr 2010 | A1 |
20100124336 | Shridhar et al. | May 2010 | A1 |
20100124337 | Wertz et al. | May 2010 | A1 |
20100131269 | Park et al. | May 2010 | A1 |
20100142715 | Goldstein et al. | Jun 2010 | A1 |
20100150367 | Mizuno | Jun 2010 | A1 |
20100158330 | Guissin et al. | Jun 2010 | A1 |
20100166203 | Peissig et al. | Jul 2010 | A1 |
20100195838 | Bright | Aug 2010 | A1 |
20100195844 | Christoph et al. | Aug 2010 | A1 |
20100207317 | Iwami et al. | Aug 2010 | A1 |
20100239126 | Grafenberg et al. | Sep 2010 | A1 |
20100246855 | Chen | Sep 2010 | A1 |
20100260345 | Shridhar et al. | Oct 2010 | A1 |
20100266137 | Sibbald et al. | Oct 2010 | A1 |
20100272276 | Carreras et al. | Oct 2010 | A1 |
20100272283 | Carreras et al. | Oct 2010 | A1 |
20100274564 | Bakalos et al. | Oct 2010 | A1 |
20100284546 | DeBrunner et al. | Nov 2010 | A1 |
20100291891 | Ridgers et al. | Nov 2010 | A1 |
20100296666 | Lin | Nov 2010 | A1 |
20100296668 | Lee et al. | Nov 2010 | A1 |
20100310086 | Magrath et al. | Dec 2010 | A1 |
20100316225 | Saito et al. | Dec 2010 | A1 |
20100322430 | Isberg | Dec 2010 | A1 |
20110007907 | Park et al. | Jan 2011 | A1 |
20110026724 | Doclo | Feb 2011 | A1 |
20110106533 | Yu | May 2011 | A1 |
20110116654 | Chan et al. | May 2011 | A1 |
20110129098 | Delano et al. | Jun 2011 | A1 |
20110130176 | Magrath et al. | Jun 2011 | A1 |
20110142247 | Fellers et al. | Jun 2011 | A1 |
20110144984 | Konchitsky | Jun 2011 | A1 |
20110158419 | Theverapperuma et al. | Jun 2011 | A1 |
20110206214 | Christoph et al. | Aug 2011 | A1 |
20110222698 | Asao et al. | Sep 2011 | A1 |
20110249826 | Van Leest | Oct 2011 | A1 |
20110288860 | Schevciw et al. | Nov 2011 | A1 |
20110293103 | Park et al. | Dec 2011 | A1 |
20110299695 | Nicholson | Dec 2011 | A1 |
20110305347 | Wurm | Dec 2011 | A1 |
20110317848 | Ivanov et al. | Dec 2011 | A1 |
20120135787 | Kusunoki et al. | May 2012 | A1 |
20120140917 | Nicholson et al. | Jun 2012 | A1 |
20120140942 | Loeda | Jun 2012 | A1 |
20120140943 | Hendrix et al. | Jun 2012 | A1 |
20120148062 | Scarlett et al. | Jun 2012 | A1 |
20120155666 | Nair | Jun 2012 | A1 |
20120170766 | Alves et al. | Jul 2012 | A1 |
20120207317 | Milani et al. | Aug 2012 | A1 |
20120215519 | Park et al. | Aug 2012 | A1 |
20120250873 | Bakalos et al. | Oct 2012 | A1 |
20120259626 | Li et al. | Oct 2012 | A1 |
20120263317 | Shin et al. | Oct 2012 | A1 |
20120281850 | Hyatt | Nov 2012 | A1 |
20120300955 | Iseki | Nov 2012 | A1 |
20120300958 | Klemmensen | Nov 2012 | A1 |
20120300960 | Mackay et al. | Nov 2012 | A1 |
20120308021 | Kwatra et al. | Dec 2012 | A1 |
20120308024 | Alderson et al. | Dec 2012 | A1 |
20120308025 | Hendrix et al. | Dec 2012 | A1 |
20120308026 | Kamath et al. | Dec 2012 | A1 |
20120308027 | Kwatra | Dec 2012 | A1 |
20120308028 | Kwatra et al. | Dec 2012 | A1 |
20120310640 | Kwatra et al. | Dec 2012 | A1 |
20130010982 | Elko et al. | Jan 2013 | A1 |
20130083939 | Fellers et al. | Apr 2013 | A1 |
20130195282 | Ohita | Aug 2013 | A1 |
20130243198 | Van Rumpt | Sep 2013 | A1 |
20130243225 | Yokota | Sep 2013 | A1 |
20130272539 | Kim et al. | Oct 2013 | A1 |
20130287218 | Alderson et al. | Oct 2013 | A1 |
20130287219 | Hendrix et al. | Oct 2013 | A1 |
20130301842 | Hendrix et al. | Nov 2013 | A1 |
20130301846 | Alderson et al. | Nov 2013 | A1 |
20130301847 | Alderson et al. | Nov 2013 | A1 |
20130301848 | Zhou et al. | Nov 2013 | A1 |
20130301849 | Alderson et al. | Nov 2013 | A1 |
20130315403 | Samuelsson | Nov 2013 | A1 |
20130343556 | Bright | Dec 2013 | A1 |
20130343571 | Rayala et al. | Dec 2013 | A1 |
20140016803 | Puskarich | Jan 2014 | A1 |
20140036127 | Pong et al. | Feb 2014 | A1 |
20140044275 | Goldstein et al. | Feb 2014 | A1 |
20140050332 | Nielsen et al. | Feb 2014 | A1 |
20140072134 | Po et al. | Mar 2014 | A1 |
20140072135 | Bajic et al. | Mar 2014 | A1 |
20140086425 | Jensen et al. | Mar 2014 | A1 |
20140146976 | Rundle | May 2014 | A1 |
20140169579 | Azmi | Jun 2014 | A1 |
20140177851 | Kitazawa et al. | Jun 2014 | A1 |
20140211953 | Alderson et al. | Jul 2014 | A1 |
20140270222 | Hendrix et al. | Sep 2014 | A1 |
20140270223 | Li et al. | Sep 2014 | A1 |
20140270224 | Zhou et al. | Sep 2014 | A1 |
20140294182 | Axelsson | Oct 2014 | A1 |
20140307887 | Alderson | Oct 2014 | A1 |
20140307888 | Alderson et al. | Oct 2014 | A1 |
20140307890 | Zhou et al. | Oct 2014 | A1 |
20140314244 | Yong et al. | Oct 2014 | A1 |
20140314246 | Hellman | Oct 2014 | A1 |
20140314247 | Zhang | Oct 2014 | A1 |
20140369517 | Zhou et al. | Dec 2014 | A1 |
20150078572 | Milani et al. | Mar 2015 | A1 |
20150092953 | Abdollahzadeh Milani et al. | Apr 2015 | A1 |
20150161981 | Kwatra | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
102011013343 | Sep 2012 | DE |
0412902 | Feb 1991 | EP |
1691577 | Aug 2006 | EP |
1880699 | Jan 2008 | EP |
1947642 | Jul 2008 | EP |
2133866 | Dec 2009 | EP |
2216774 | Aug 2010 | EP |
2237573 | Oct 2010 | EP |
2395500 | Dec 2011 | EP |
2395501 | Dec 2011 | EP |
2551845 | Jan 2013 | EP |
2583074 | Apr 2013 | EP |
2401744 | Nov 2004 | GB |
2436657 | Oct 2007 | GB |
2455821 | Jun 2009 | GB |
2455824 | Jun 2009 | GB |
2455828 | Jun 2009 | GB |
2484722 | Apr 2012 | GB |
H06-186985 | Jul 1994 | JP |
07104769 | Apr 1995 | JP |
07240989 | Sep 1995 | JP |
07325588 | Dec 1995 | JP |
WO 9113429 | Sep 1991 | WO |
WO 9911045 | Mar 1999 | WO |
WO 03015074 | Feb 2003 | WO |
WO 03015275 | Feb 2003 | WO |
WO 2004009007 | Jan 2004 | WO |
WO 2004017303 | Feb 2004 | WO |
WO 2006128768 | Dec 2006 | WO |
WO 2007007916 | Jan 2007 | WO |
WO 2007011337 | Jan 2007 | WO |
WO 2007110807 | Oct 2007 | WO |
WO 2007113487 | Nov 2007 | WO |
WO 2010117714 | Oct 2010 | WO |
WO 2010131154 | Nov 2010 | WO |
WO 2012134874 | Oct 2012 | WO |
WO 2014158475 | Oct 2014 | WO |
WO 2014168685 | Oct 2014 | WO |
WO 2014172005 | Oct 2014 | WO |
WO 2014172006 | Oct 2014 | WO |
WO 2014172010 | Oct 2014 | WO |
WO 2014172019 | Oct 2014 | WO |
WO 2014172021 | Oct 2014 | WO |
WO 2014200787 | Dec 2014 | WO |
WO 2015038255 | Mar 2015 | WO |
WO 2015088639 | Jun 2015 | WO |
WO 2015088651 | Jun 2015 | WO |
WO 2015088653 | Jun 2015 | WO |
Entry |
---|
U.S. Appl. No. 13/686,353, filed Nov. 27, 2012, Hendrix, et al. |
U.S. Appl. No. 13/794,931, filed Mar. 12, 2013, Lu, et al. |
U.S. Appl. No. 13/794,979, filed Mar. 12, 2013, Alderson, et al. |
U.S. Appl. No. 13/968,007, filed Aug. 15, 2013, Hendrix, et al. |
U.S. Appl. No. 14/029,159, filed Sep. 17, 2013, Li, et al. |
U.S. Appl. No. 14/062,951, filed Oct. 25, 2013, Zhou, et al. |
U.S. Appl. No. 14/197,814, filed Mar. 5, 2014, Kaller, et al. |
U.S. Appl. No. 14/210,537, filed Mar. 14, 2014, Abdollahzadeh Milani, et. |
U.S. Appl. No. 14/210,589, filed Mar. 14, 2014, Abdollahzadeh Milani, et. |
Black, John W., “An Application of Side-Tone in Subjective Tests of Microphones and Headsets”, Project Report No. NM 001 064.01.20, Research Report of the U.S. Naval School of Aviation Medicine, Feb. 1, 1954, 12 pages (pp. 1-12 in pdf), Pensacola, FL, US. |
Peters, Robert W., “The Effect of High-Pass and Low-Pass Filtering of Side-Tone Upon Speaker Intelligibility”, Project Report No. NM 001 064.01.25, Research Report of the U.S. Naval School of Aviation Medicine, Aug. 16, 1954, 13 pages (pp. 1-13 in pdf), Pensacola, FL, US. |
Lane, et al., “Voice Level: Autophonic Scale, Perceived Loudness, and the Effects of Sidetone”, The Journal of the Acoustical Society of America, Feb. 1961, pp. 160-167, vol. 33, No. 2., Cambridge, MA, US. |
Liu, et al., “Compensatory Responses to Loudness-shifted Voice Feedback During Production of Mandarin Speech”, Journal of the Acoustical Society of America, Oct. 2007, pp. 2405-2412, vol. 122, No. 4. |
Paepcke, et al., “Yelling in the Hall: Using Sidetone to Address a Problem with Mobile Remote Presence Systems”, Symposium on User Interface Software and Technology, Oct. 16-19, 2011, 10 pages (pp. 1-10 in pdf), Santa Barbara, CA, US. |
Therrien, et al., “Sensory Attenuation of Self-Produced Feedback: The Lombard Effect Revisited”, PLOS One, Nov. 2012, pp. 1-7, vol. 7, Issue 11, e49370, Ontario, Canada. |
Pfann, et al., “LMS Adaptive Filtering with Delta-Sigma Modulated Input Signals,” IEEE Signal Processing Letters, Apr. 1998, pp. 95-97, vol. 5, No. 4, IEEE Press, Piscataway, NJ. |
Toochinda, et al. “A Single-Input Two-Output Feedback Formulation for ANC Problems,” Proceedings of the 2001 American Control Conference, Jun. 2001, pp. 923-928, vol. 2, Arlington, VA. |
Kuo, et al., “Active Noise Control: A Tutorial Review,” Proceedings of the IEEE, Jun. 1999, pp. 943-973, vol. 87, No. 6, IEEE Press, Piscataway, NJ. |
Johns, et al., “Continuous-Time LMS Adaptive Recursive Filters,” IEEE Transactions on Circuits and Systems, Jul. 1991, pp. 769-778, vol. 38, No. 7, IEEE Press, Piscataway, NJ. |
Shoval, et al., “Comparison of DC Offset Effects in Four LMS Adaptive Algorithms,” IEEE Transactions on Circuits and Systems II: Analog and Digital Processing, Mar. 1995, pp. 176-185, vol. 42, Issue 3, IEEE Press, Piscataway, NJ. |
Mali, Dilip, “Comparison of DC Offset Effects on LMS Algorithm and its Derivatives,” International Journal of Recent Trends in Engineering, May 2009, pp. 323-328, vol. 1, No. 1, Academy Publisher. |
Kates, James M., “Principles of Digital Dynamic Range Compression,” Trends in Amplification, Spring 2005, pp. 45-76, vol. 9, No. 2, Sage Publications. |
Gao, et al., “Adaptive Linearization of a Loudspeaker,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 14-17, 1991, pp. 3589-3592, Toronto, Ontario, CA. |
Silva, et al., “Convex Combination of Adaptive Filters With Different Tracking Capabilities,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 15-20, 2007, pp. III 925-928, vol. 3, Honolulu, HI, USA. |
Akhtar, et al., “A Method for Online Secondary Path Modeling in Active Noise Control Systems,” IEEE International Symposium on Circuits and Systems, May 23-26, 2005, pp. 264-267, vol. 1, Kobe, Japan. |
Davari, et al., “A New Online Secondary Path Modeling Method for Feedforward Active Noise Control Systems,” IEEE International Conference on Industrial Technology, Apr. 21-24, 2008, pp. 1-6, Chengdu, China. |
Lan, et al., “An Active Noise Control System Using Online Secondary Path Modeling With Reduced Auxiliary Noise,” IEEE Signal Processing Letters, Jan. 2002, pp. 16-18, vol. 9, Issue 1, IEEE Press, Piscataway, NJ. |
Liu, et al., “Analysis of Online Secondary Path Modeling With Auxiliary Noise Scaled by Residual Noise Signal,” IEEE Transactions on Audio, Speech and Language Processing, Nov. 2010, pp. 1978-1993, vol. 18, Issue 8, IEEE Press, Piscataway, NJ. |
U.S. Appl. No. 14/228,322, filed Mar. 28, 2014, Alderson, et al. |
U.S. Appl. No. 13/762,504, filed Feb. 8, 2013, Abdollahzadeh Milani, et al. |
U.S. Appl. No. 13/721,832, filed Dec. 20, 2012, Lu, et al. |
U.S. Appl. No. 13/724,656, filed Dec. 21, 2012, Lu, et al. |
U.S. Appl. No. 13/968,013, filed Aug. 15, 2013, Abdollahzadeh Milani, et al. |
U.S. Appl. No. 13/924,935, filed Jun. 24, 2013, Hellman. |
U.S. Appl. No. 13/896,526, filed May 17, 2013, Naderi. |
U.S. Appl. No. 14/101,955, filed Dec. 10, 2013, Alderson. |
U.S. Appl. No. 14/101,777, filed Dec. 10, 2013, Alderson et al. |
Abdollahzadeh Milani, et al., “On Maximum Achievable Noise Reduction in ANC Systems”,2010 IEEE International Conference on Acoustics Speech and Signal Processing, Mar. 14-19, 2010, pp. 349-352, Dallas, TX, US. |
Cohen, Israel, “Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging”, IEEE Transactions on Speech and Audio Processing, Sep. 2003, pp. 1-11, vol. 11, Issue 5, Piscataway, NJ, US. |
Ryan, et al., “Optimum Near-Field Performance of Microphone Arrays Subject to a Far-Field Beampattern Constraint”, J. Acoust. Soc. Am., Nov. 2000, pp. 2248-2255, 108 (5), Pt. 1, Ottawa, Ontario, Canada. |
Cohen, et al., “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement”, IEEE Signal Processing Letters, Jan. 2002, pp. 12-15, vol. 9, No. 1, Piscataway, NJ, US. |
Martin, Rainer, “Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics”, IEEE Transactions on Speech and Audio Processing, Jul. 2001, pp. 504-512, vol. 9, No. 5, Piscataway, NJ, US. |
Martin, Rainer, “Spectral Subtraction Based on Minimum Statistics”, Signal Processing VII Theories and Applications, Proceedings of EUSIPCO-94, 7th European Signal Processing Conference, Sep. 13-16, 1994, pp. 1182-1185, vol. III, Edinburgh, Scotland, U.K. |
Booij, et al., “Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones”, Proceedings of the International Conference on Noise and Vibration Engineering, ISMA 2010, Sep. 20-22, 2010, pp. 151-166, Leuven. |
Kuo, et al., “Residual noise shaping technique for active noise control systems”, J. Acoust. Soc. Am. 95 (3), Mar. 1994, pp. 1665-1668. |
Lopez-Caudana, Edgar Omar, “Active Noise Cancellation: The Unwanted Signal and The Hybrid Solution”, Adaptive Filtering Applications, Dr. Lino Garcia (Ed.), Jul. 2011, pp. 49-84, ISBN: 978-953-307-306-4, InTech. |
Senderowicz, et al., “Low-Voltage Double-Sampled Delta-Sigma Converters”, IEEE Journal on Solid-State Circuits, Dec. 1997, pp. 1907-1919, vol. 32, No. 12, Piscataway, NJ. |
Hurst, et al., “An improved double sampling scheme for switched-capacitor delta-sigma modulators”, 1992 IEEE Int. Symp. on Circuits and Systems, May 10-13, 1992, vol. 3, pp. 1179-1182, San Diego, CA. |
U.S. Appl. No. 14/578,567, filed Dec. 22, 2014, Kwatra, et al. |
Widrow, B., et al., Adaptive Noise Cancelling; Principles and Applications, Proceedings of the IEEE, Dec. 1975, pp. 1692-1716, vol. 63, No. 13, IEEE, New York, NY, US. |
Morgan, et al., A Delayless Subband Adaptive Filter Architecture, IEEE Transactions on Signal Processing, IEEE Service Center, Aug. 1995, pp. 1819-1829, vol. 43, No. 8, New York, NY, US. |
U.S. Appl. No. 14/656,124, filed Mar. 12, 2015, Hendrix, et al. |
International Search Report and Written Opinion in PCT/US2015/022113, mailed on Jul. 23, 2015, 13 pages (pp. 1-13 in pdf). |
U.S. Appl. No. 14/734,321, filed Jun. 9, 2015, Alderson, et al. |
Campbell, Mikey, “Apple looking into self-adjusting earbud headphones with noise cancellation tech”, Apple Insider, Jul. 4, 2013, pp. 1-10 (10 pages in pdf), downloaded on May 14, 2014 from http://appleinsider.com/articles/13/07/04/apple-looking-into-self-adjusting-earbud-headphones-with-noise-cancellation-tech. |
Jin, et al. “A simultaneous equation method-based online secondary path modeling algorithm for active noise control”, Journal of Sound and Vibration, Apr. 25, 2007, pp. 455-474, vol. 303, No. 3-5, London, GB. |
Erkelens, et al., “Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation”, IEEE Transactions on Audio Speech and Language Processing, Aug. 2008, pp. 1112-1123, vol. 16, No. 6, Piscataway, NJ, US. |
Rao, et al., “A Novel Two State Single Channel Speech Enhancement Technique”, India Conference (INDICON) 2011 Annual IEEE, IEEE, Dec. 2011, 6 pages (pp. 1-6 in pdf), Piscataway, NJ, US. |
Rangachari, et al., “A noise-estimation algorithm for highly non-stationary environments”, Speech Communication, Feb. 2006, pp. 220-231, vol. 48, No. 2. Elsevier Science Publishers. |
Parkins, et al., “Narrowband and broadband active control in an enclosure using the acoustic energy density”, J. Acoust. Soc. Am. Jul. 2000, pp. 192-203, vol. 108, issue 1, US. |
Feng, et al.., “A broadband self-tuning active noise equaliser”, Signal Processing, Oct. 1, 1997, pp. 251-256, vol. 62, No. 2, Elsevier Science Publishers B.V. Amsterdam, NL. |
Zhang, et al., “A Robust Online Secondary Path Modeling Method with Auxiliary Noise Power Scheduling Strategy and Norm Constraint Manipulation”, IEEE Transactions on Speech and Audio Processing, IEEE Service Center, Jan. 1, 2003, pp. 45-53, vol. 11, No. 1, NY. |
Lopez-Gaudana, et al., “A hybrid active noise cancelling with secondary path modeling”, 51st Midwest Symposium on Circuits and Systems, MWSCAS 2008, Aug. 10-13, 2008, pp. 277-280, IEEE, Knoxville, TN. |
U.S. Appl. No. 14/840,831, Aug. 31, 2015, Hendrix, et al. |
Office Action in U.S. Appl. No. 14/026,021 mailed on Sep. 1, 2015, 9 pages (pp. 1-9 in pdf). |
Amendment to Office Action in U.S. Appl. No. 14/026,021, 14 pages (pp. 1-14 in pdf). |
International Patent Application No. PCT/US2014/049600, International Search Report and Written Opinion, Jan. 14, 2015, 12 pages. |
International Patent Application No. PCT/US2014/061753, International Search Report and Written Opinion, Feb. 9, 2015, 8 pages. |
International Patent Application No. PCT/US2014/061548, International Search Report and Written Opinion, Feb. 12, 2015, 13 pages. |
International Patent Application No. PCT/US2014/060277, International Search Report and Written Opinion, Mar. 9, 2015, 11 pages. |
International Patent Application No. PCT/US2014/017112, International Search Report and Written Opinion, May 8, 2015, 22 pages. |
International Patent Application No. PCT/US2014/017096, International Search Report and Written Opinion, May 27, 2015, 11 pages. |
International Patent Application No. PCT/US2014/017343, International Search Report and Written Opinion, Aug. 8, 2014, 22 pages. |
International Patent Application No. PCT/US2014/018027, International Search Report and Written Opinion, Sep. 4, 2014, 14 pages. |
International Patent Application No. PCT/US2014/017374, International Search Report and Written Opinion, Sep. 8, 2014, 13 pages. |
International Patent Application No. PCT/US2014/019395, International Search Report and Written Opinion, Sep. 9, 2014, 14 pages. |
International Patent Application No. PCT/US2014/019469, International Search Report and Written Opinion, Sep. 12, 2014, 13 pages. |
International Patent Application No. PCT/US2014/040999, International Search Report and Written Opinion, Oct. 18, 2014, 12 pages. |
International Patent Application No. PCT/US2013/049407, International Search Report and Written Opinion, Jun. 18, 2014, 13 pages. |
Rafaely, Boaz, “Active Noise Reducing Headset—an Overview”, The 2001 International Congress and Exhibition on Noise Control Engineering, Aug. 27-30, 2001, 10 pages (pp. 1-10 in pdf), The Netherlands. |
Ray, et al., “Hybrid Feedforward-Feedback Active Noise Reduction for Hearing Protection and Communication”, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, Jan. 2006, pp. 2026-2036, vol. 120, No. 4, New York, NY, US. |
Number | Date | Country | |
---|---|---|---|
20150296296 A1 | Oct 2015 | US |