The disclosed embodiments of the present invention relate to generating an output clock according to a reference clock, and more particularly, to a frequency synthesizer with injection pulling/pushing suppression/mitigation and a related frequency synthesizing method thereof.
Frequency synthesizers are commonly used in a variety of electronic devices. Taking a conventional wireless communications system for example, a radio-frequency (RF) phase-locked loop (PLL) may be used as a frequency synthesizer to generate an RF clock to a following transmitter component according to a baseband reference clock. However, due to certain factors, the RF PLL may suffer from injection pulling/pushing to generate a disturbed RF clock. For one example, concerning the same transceiver, the RF PLL and a power amplifier (PA) may be placed in locations close to each other. As a result, the high-power RF signal generated from the PA may be injected into a controllable oscillator of the RF PLL, thus interfering with the clock frequency of the RF clock generated from the RF PLL. For another example, concerning a case where an electronic device employs a multi-RF design such as DSDA (Dual SIM Dual Active), carrier aggregation (CA), or IDC (In-Device Coexistence), multiple RF systems may be placed in locations close to each other. As a result, the output signal generated from at least one of the RF PLL and the PA of a second RF system may be injected into a controllable oscillator of the RF PLL in a first RF system, thus interfering with the clock frequency of the RF clock generated from the RF PLL in the first RF system.
In accordance with exemplary embodiments of the present invention, a frequency synthesizer with injection pulling/pushing suppression/mitigation and a related frequency synthesizing method thereof are proposed to solve the above-mentioned problem.
According to a first aspect of the present invention, an exemplary frequency synthesizer is disclosed. The exemplary frequency synthesizer includes a phase-locked loop (PLL) and a loop bandwidth controller. The PLL is configured to generate an output clock according to a reference clock. The loop bandwidth controller is configured to check at least one indicator indicative of injection pulling/pushing of the PLL to configure a loop bandwidth of the PLL.
According to a second aspect of the present invention, an exemplary frequency synthesizing method is disclosed. The frequency synthesizing method includes: checking at least one indicator indicative of injection pulling/pushing of a phase-locked loop (PLL) for configuring a loop bandwidth of the PLL; and utilizing the PLL to generate an output clock according to a reference clock.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . ”. Also, the term “couple” is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
The key idea of the present invention is to adaptively adjust a loop bandwidth of a phase-clocked loop (PLL) in response to at least one indicator of injection pulling/pushing of the PLL. In this way, the injection pulling/pushing introduced noise of a controllable oscillator in the PLL may be filtered out by an adaptive setting of the loop bandwidth of the PLL (also known as PLL bandwidth). In one exemplary design, adaptive digital techniques may be employed to adjust the loop bandwidth of the PLL, thereby relaxing the analog requirement for injection pulling/pushing suppression/mitigation. Further details of the proposed injection pulling/pushing suppression/mitigation design are described as below.
As shown in
A frequency synthesizer (e.g., frequency synthesizer 100) and a power amplifier (e.g., power amplifier 101) of the same RF system may be integrated in a single chip for achieving a compact size of the RF system. As a result, the RF injection pulling/pushing caused by the power amplifier may degrade the performance of the frequency synthesizer. Further, when multiple RF systems are implemented in the same electronic device, the RF injection pulling/pushing caused by one RF system may degrade the performance of the frequency synthesizer in another RF system. The present invention proposes using the loop bandwidth controller 104 to achieve injection pulling/pushing suppression/mitigation.
The loop bandwidth controller 104 is coupled to the PLL 102, and may be configured to check at least one indicator indicative of injection pulling/pushing of the PLL 102 to configure a loop bandwidth f0 of the PLL 102 for injection pulling/pushing suppression/mitigation. For example, the PLL 102 may include a loop filter 103, and the loop bandwidth controller 104 may set the loop bandwidth f0 of the PLL 102 by controlling a configuration of the loop filter 103 in response to magnitude of the injection pulling/pushing. The adjustable loop filter configuration may include at least one of a filter coefficient setting (e.g., tap coefficient (s) of a filter), a filter type (e.g., a finite impulse response (FIR) filter or an infinite impulse response (IIR) filter), a filter order (e.g., a first-order filter, a second-order filter, or a higher-order filter), and a filter gain. It should be noted that the loop filter 103 may be an analog filter or a digital filter, depending upon the actual architecture of the PLL 102. Further, adjusting the configuration of the loop filter 103 to change the loop bandwidth f0 of the PLL 102 is merely one embodiment of the present invention. Any component in the PLL 102 that can affect the loop bandwidth f0 of the PLL 102 may be configured by the loop bandwidth controller 104 to achieve the desired injection pulling/pushing suppression/mitigation. For another example, the PLL 102 may have no loop filter included therein, and the loop bandwidth controller 104 may set the loop bandwidth f0 of the PLL 102 by controlling a gain value of the PLL 102 in response to magnitude of the injection pulling/pushing. These alternative designs all fall within the scope of the present invention.
By way of example, but not limitation, the at least one indicator checked by the loop bandwidth controller 104 may include an indicator S1 from the PLL 102, an indicator S2 from the RF system 20, and/or an indicator S3 from a physical layer (i.e., layer 1) associated with the RF system 10. In a first exemplary design, the loop bandwidth controller 104 may control the loop bandwidth f0 of the PLL 102 according to only one of the indicators S1, S2 and S3. In a second exemplary design, the loop bandwidth controller 104 may control the loop bandwidth f0 of the PLL 102 according to multiple indicators selected from the indicators S1, S2 and S3.
The above is for illustrative purposes only. In an alternative design, other indicator(s) indicative of injection pulling/pushing of the PLL 102 may be referenced by the loop bandwidth controller 104 for configuring the loop bandwidth f0 of the PLL 102. That is, any PLL-based frequency synthesizer that checks the current status of injection pulling/pushing to control the loop bandwidth f0 of the PLL 102 for injection pulling/pushing suppression/mitigation falls within the scope of the present invention.
For better understanding of technical features of the present invention, an example of a frequency synthesizer with injection pulling/pushing suppression/mitigation is detailed as below.
Please refer to
The phase error generation circuit 208 may receive RF channel number (s), and may be configured to generate an instantaneous phase error θe according to the digital code ε and a selected RF channel number Nc, where Nc=CLKRF frequency/baseband clock frequency. The phase error generation circuit 208 may refer to the selected RF channel number Nc to decide the phase error of the desired output clock CLKRF. The phase error generation circuit 208 may include any circuit components needed to convert the digital code ε into the instantaneous phase error θe. As a person skilled in the pertinent art should readily understand details of generating the instantaneous phase error θe, further description is omitted here for brevity.
The LF 210 may generate a digital control value to the DCO 212 according to the phase error θe. Next, the DCO 212 may control the clock frequency of the output clock CLKRF in response to the digital control value generated from the LF 210. It should be noted that the phase error generation circuit 208 and the LF 210 may operate in a digital domain. Therefore, the LF 210 may be a digital loop filter.
In this embodiment, the LF controller 204 may be configured to act as a loop bandwidth controller of the ADPLL 202, and may be used to set the loop bandwidth f0 of the ADPLL 202 based on at least one of indicators S1, S2 and S3. In a first exemplary design, the indicator S1 from the ADPLL 202 may be referenced by the LF controller 204 for detecting occurrence of the RF injection pulling/pushing and/or measuring the magnitude of the RF injection pulling/pushing. For one example, the LF controller 204 may obtain the indicator S1 based on an output of the phase error generation circuit 208. Since the instantaneous phase error θe may be positively correlated to the magnitude of the RF injection pulling/pushing, the instantaneous phase error θe may be involved in the RF injection pulling/pushing measurement performed by the LF controller 204. For example, when the ADPLL 202 employs Type-I PLL architecture and the instantaneous phase error θe has a significant change (e.g., a large error variation), this may indicate that occurrence of RF injection pulling/pushing is positive, i.e., the DCO 212 is suffering from the RF injection pulling/pushing now. For another example, when the ADPLL 202 employs Type-II PLL architecture and the instantaneous phase error θe has a large absolute value (e.g., a large error magnitude), this may indicate that occurrence of RF injection pulling/pushing is positive, i.e., the DCO 212 is suffering from the RF injection pulling/pushing now. In short, the magnitude (for type-II PLL) or variation (for type-I PLL) of instantaneous phase error may be positively correlated to the magnitude of the RF injection pulling/pushing. At this moment, the magnitude of the RF injection pulling/pushing may be measured based on the output of the phase error generation circuit 208. It should be noted that, based on the actual design consideration, the instantaneous phase errors θe obtained at different time points may be directly used for RF injection pulling/pushing detection and measurement, or may be processed (e.g., filtered or averaged) before used for RF injection pulling/pushing detection and measurement. That is, the present invention has no limitation on how the instantaneous phase error θe is used for RF injection pulling/pushing detection and measurement.
Alternatively, the LF controller 204 may obtain the indicator S1 based on an output of the TDC 206. Since the digital code ε represents the time difference between the reference clock CLKREF and the feedback clock CLKFB (which is derived from the output clock CLKRF generated from the DCO 212), the digital information available at the TDC output may reflect the current status of the RF injection pulling/pushing. Hence, the digital code ε may be involved in the RF injection pulling/pushing detection and measurement performed by the LF controller 204. Similarly, based on the actual design consideration, the digital codes ε obtained at different time points may be directly used for RF injection pulling/pushing detection and measurement, or may be processed (e.g., filtered or averaged) before used for RF injection pulling/pushing detection and measurement. That is, the present invention has no limitation on how the digital code ε is used for RF injection pulling/pushing detection and measurement.
In a second exemplary design, the indicator S2 from another RF system may be referenced by the LF controller 204 for detecting occurrence of the RF injection pulling/pushing. For example, the LF controller 204 may obtain the indicator S2 based on an operational status INFRF2 of a second RF system (e.g., RF system 20 in
In a third exemplary design, the indicator S3 from the physical layer may be referenced by the LF controller 204 for detecting occurrence of the RF injection pulling/pushing and/or measuring the magnitude of the RF injection pulling/pushing. For example, the LF controller 204 may obtain the indicator S3 based on layer-one information INFL1 of a transmit power of an RF system (e.g., RF system 10) in which the frequency synthesizer 200 is implemented. Specifically, the physical layer (i.e., layer 1) provides information of a transmit power designed for signal transmission. Thus, when the layer-one information INFL1 indicates that the transmit power is high, the output power of a power amplifier (e.g., power amplifier 101 in
Please refer to
Based on above observation, the LF controller 204 may employ a proposed adaptive injection pulling/pushing suppression/mitigation scheme to adjust the loop bandwidth f0 of the ADPLL 202 in response to a current status of the RF injection pulling/pushing. In this embodiment, the LF controller 204 may adjust the loop bandwidth f0 of the ADPLL 202 by controlling a configuration of LF 210, where the filter configuration may include at least one of a filter coefficient setting, a filter type, a filter order, and a filter gain.
Please refer to
Further, the LF controller 204 may set the loop bandwidth f0 of the ADPLL 202 by different values according to different RF injection pulling/pushing magnitudes. Specifically, the LF controller 204 (which may act as a loop bandwidth controller) may be configured to increase the loop bandwidth f0 of the ADPLL 202 when the at least one indicator S1/S2/S3 indicates that the RF injection pulling/pushing of the ADPLL 202 is increased, and may be configured to decrease the loop bandwidth f0 of the ADPLL 202 when the at least one indicator S1/S2/S3 indicates that the RF injection pulling/pushing of the ADPLL 202 is decreased.
Step 600: Start.
Step 602: Get at least one indicator indicative of injection pulling/pushing of a phase-locked loop (PLL).
Step 604: Determine if injection pulling/pushing of the PLL occurs by checking the at least one indicator. If yes, go to step 606; otherwise, go to step 610.
Step 606: Check if the magnitude of the injection pulling/pushing is not less than a first threshold TH1. If yes, go to step 616; otherwise, go to step 608.
Step 608: Check if the magnitude of the injection pulling/pushing is not less than a second threshold TH2 (TH2<TH1). If yes, go to step 614; otherwise, go to step 612.
Step 610: Control a loop filter in the PLL to employ a first filter configuration corresponding to a first loop bandwidth value of the PLL. Go to step 618.
Step 612: Control a loop filter in the PLL to employ a second filter configuration corresponding to a second loop bandwidth value of the PLL, where the second loop bandwidth value is larger than the first loop bandwidth value. Go to step 618.
Step 614: Control a loop filter in the PLL to employ a third filter configuration corresponding to a third loop bandwidth value of the PLL, where the third loop bandwidth value is larger than the second loop bandwidth value. Go to step 618.
Step 616: Control a loop filter in the PLL to employ a fourth filter configuration corresponding to a fourth loop bandwidth value of the PLL, where the fourth loop bandwidth value is larger than the third loop bandwidth value.
Step 618: End.
It should be noted that the adaptive injection pulling/pushing suppression/mitigation method shown in
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.