The present disclosure relates to devices, methods, and systems for providing a Fresnel lens array with improved off-axis optical efficiency.
Fresnel lenses are typically round when viewed from their front and as such, their form factor may not be usable in some situations. For example, where a small and/or polygonal implementation is needed, such round devices may not fit within the area in which the lens is needed.
Further, in some implementations, a wide field of view may be desired. However, a Fresnel lens has a limited field of view that may be too limited to be usable in such implementations.
In some implementations, an array of Fresnel lenses can be used to create discrete detection zones and increase the field of view. A flat Fresnel lens array will generate low optical efficiency in the outer elements of the array due to off-axis issues. A cylindrical or spherical formation can be used to somewhat mitigate the off-axis efficiency issues.
However, although a cylindrical or spherical lens array would be optically more efficient, a flat lens array may be required for cosmetic reasons or due to the area available within the form factor of the device on which the lens array is to be mounted. In a cylindrical or spherical array, each element in the array can be oriented such that the normal vector to the center of the lens (e.g., optical axis of each lens element) points toward a detection zone that the lens element is intended to detect motion in.
In this on-axis lens orientation, an image focused on a pyroelectric sensor's detector of a target (e.g., from a human) in that lens element's detection zone will form a nicely focused and un-abberated image. Additionally, all lens elements in a cylindrical or spherical lens array can be of a single focal length equal to the radius of curvature of the array. In a traditional flat Fresnel lens array, a lens element in the center of the array directly in front of the pyroelectric sensor will generate an image of a target on the detectors that is in focus and un-abberated when the correct focal length Fresnel lens is used. However, as the target moves off center and lens elements are placed to the side of lens center, the images generated using lens elements of the same focal length become more and more out of focus.
To compensate, longer focal lengths are used as elements depart from center. The off axis effects produce more and more abberated images as elements depart from center even when using the appropriate focal lengths resulting in progressively less energy reaching the pyro detectors as more energy goes above, below, to the left, and to the right of the pyroelectric sensors detectors.
In an attempt to compensate for the out of focus issue, the lens designer can progressively increase the element focal lengths to balance the energy on each detector and increase the element size progressively as the elements depart from the center position. The goal of increasing the element size is to achieve the same amount of energy landing on the pyro detector when the target is in one of the two detection zones of a side lens element as when the target is in one of the two detection zones of the center lens element.
There is a limit to the lens size of these side elements in a flat lens array wherein increasing the size of the element beyond a certain size no longer results in a proportional increase in energy and ultimately results in no increase in energy landing on the detectors of the pyroelectric (pyro) sensors. It is this issue that limits the practical horizontal field of view angle of a flat Fresnel lens array. This can be an issue, for example, where it is desirable to have near the same level of energy landing on the pyro detectors from a target at 9.5 meters distance in detection zones coming from the outside lens elements reaching horizontally as far as 60° off axis, as that landing on the pyro detectors from a target at 12.0 meters distance, in detection zones coming from the center lens element, where the image is on-axis.
Fresnel lens arrays, devices, and systems and methods of creating such arrays are described herein. For example, one embodiment includes a Fresnel lens array, having a first portion including one or more defined areas of one or more Fresnel lenses, and a second portion including a first section that has its optical center located in a second section that is vertically above or below the first section and wherein each section is formed from a defined area of the one or more Fresnel lenses.
These defined areas (i.e., lens elements) can be created from parts of one type of Fresnel lens or from multiple lenses to form a unique array structure. The benefits of such structures can be a wider field of view and/or improved form factor among many other benefits.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof. The drawings show by way of illustration how one or more embodiments of the disclosure may be practiced.
These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice one or more embodiments of this disclosure. It is to be understood that other embodiments may be utilized and that process changes may be made without departing from the scope of the present disclosure.
As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, combined, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. The proportion and the relative scale of the elements provided in the figures are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense.
The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits.
As used herein, “a” or “a number of” something can refer to one or more such things. For example, “a number of lens elements” can refer to one or more lens elements.
In the system illustrated in
Such functionality can be beneficial, for example, when a human is at work during the day, but returns home in the evening or is on vacation and returns home. In such implementations, the building control unit can be used to provide comfortable building characteristics (based on changing one or more building control parameters) when the human is present and can, for example, switch to a set of characteristics (based on changing one or more building control parameters) that promote energy savings when the human is not present.
The Fresnel lens array 206 is also mounted in a housing 204 and can, for example, be positioned within the system 100 of
The form factor is also compact and can be a non-round shape, such as rectangular, allowing its use in many applications. It also has a wider field of view than previous Fresnel lenses or lens arrays due to its' unique use of complimentary lens elements in the outer off-axis regions (to be discussed later), allowing it to be utilized in many new fields of use.
The lenses are set at a distance, from the detector elements, that is equal to the focal length of each lens 219. Such an arrangement focuses the image of objects in the field of view onto the plane of detector elements.
The detectors in the pyroelectric sensor 208 are configured electrically such that an increase in energy reaching, for example, element 209 will generate a negative electrical signal, while an increase in energy reaching detector 211 will generate a positive electrical signal. This use of a positive and a negative generating element, for example, allows the signals to cancel out should the room temperature increase or decrease or an object viewed in a zone pair (e.g., 215-1 and 215-2) change temperature.
The energy of all objects in detection zone 215-2 that reach lens element 213-2 will be focused onto detector element 209 while the energy of all objects in zone 215-1 that reaches lens element 213-2 will be focused onto detector element 211. For simplicity only the rays of the object at the edges of the detection zones is shown and only the rays that pass through the optical center point of each lens element are illustrated.
The noted rays strike the edges of the detector elements. When a target (e.g., human walking through the room) traverses an area within the field of view, for example, starting at the bottom of
When this occurs, the energy from the target's body inside the detection zone that lands on lens element 213-2 will land on detector 209, generating a negative signal. As the target traverses out of the detection zone, the signal returns to zero.
As the target continues, the target enters detection zone 215-1 and the energy from the target's body inside the detection zone that lands on lens element 213-2 will land on detector 211, generating a positive signal. As the target traverses out of the detection zone, the signal returns to zero.
The resulting electrical signal generated by the target passing though this detection zone pair is a full sine wave. The same will occur as a target traverses through each detection zone pair created by each lens element in a motion detection system.
For aid to the reader, each lens has an optical axis illustrated in
These defined areas are small portions of a larger Fresnel lens structure and are selected due to their unique focal length, optical axis and/or field of view characteristics, such that they can improve the overall field of view of the Fresnel lens array. This will be discussed in more detail with respect to
The lens array optical elements may not be parts of or removed from actual Fresnel lenses, but may be formed from a lens surface structure (as shown in
The parts may be from different types or focal lengths of Fresnel lenses. For example, the array may have parts from two or more of an 8 mm, 10 mm, 16 m, and/or 48 mm focal length lenses. Through use of parts from these different focal length lenses, the array can be individualized to improve its characteristics over traditional Fresnel lenses.
The embodiment of
Some embodiments can utilize a center portion having one or more top sections and one or more middle sections. However, as illustrated in
The center portion 328 can also include three columns 318-1, 318-2, and 318-3 with each column having a top section and a middle section. And, as illustrated in
The lower portion 324 has one or more defined areas of the one or more Fresnel lenses. For example, in some embodiments the defined areas are aligned in columns 318-2, 318-3, 318-4, 318-5 and 318-6 (e.g., five columns). As shown in
As shown in
In prior Fresnel designs, the outer portions of the lenses were weak and inefficient and as a result, the size of the outer elements would be increased in an attempt to grab more energy. However, beyond a certain size, no added energy from a target object at distance reaching an outer lens element could land on the pyro sensors' detection elements (e.g., sensor 208) and consequently, the sensor could not be improved beyond a certain limit.
The outer portions of the embodiments of the present disclosure use multiple lens elements that result in increased energy landing on the sensor. In some such implementations, two or more times the amount of energy from elements 310-1, 310-2, and 310-3, as compared to a design where a single element is placed in the area occupied by 310-1, 310-2, and 310-3.
An inefficiency exists in a single tall outer lens element as the energy from a human at distance reaching the upper portion of this single tall lens element will be directed above the pyros' detection elements and the energy reaching the lower portion of this element will be directed below the pyros' detection elements. An increase in the energy reaching the pyro detectors from off-axis lens elements is possible without increasing the size of the lens array, because the unique elements are selected with optical centers positioned such that each element in a single outer column focuses energy on the pyros detectors from the same area in the field of view minimizing energy going above or below the pyros detection elements. For example, the optical center (cross shape) of element 310-3 falls in the upper left corner of element 310-1, and the optical center of element 310-1 falls in the lower left corner of 310-3. A similar arrangement occurs with respect to elements 316-1 and 316-3, with the optical center of element 316-3 falling in the upper right corner of element 316-1, and the optical center of element 316-1 falling in the lower right corner of 316-3.
As shown in
Further, each of the left and right portions of the embodiment of
One benefit of selecting particular defined areas of Fresnel lens structures is the ability to potentially maximize the energy from a human at distance directed to a sensor by the lens array. For example, rather than using a whole Fresnel 48 mm focal length lens or one large section of the lens structure, in the embodiment shown in
Another implementation that is beneficial in the embodiment shown in
The locations of the optical centers of the various elements of the lens array are used to improve the energy projected onto the sensor behind the array and, as such, the locations shown in
In this manner, the optical element 330-2 is located between optical center 330-1 and element 310-1. In
Likewise, the optical center 330-3 of element 310-3 is located at a position above the optical center 330-2 of element 310-2. In this manner, the optical element 330-2 is located between optical center 330-3 and element 310-3. Also shown in
The same structure is shown on the opposite end of the array in column 318-7, in which the optical center 336-1 of element 316-1 is located at a position below the optical center 336-2 of element 316-2. As such, the optical element 336-2 is located between optical center 336-1 and element 316-1. Optical center 330-1 may be beyond the edge of the array.
The optical center 336-3 of element 316-3 is located at a position above the optical center 336-2 of element 316-2. In this manner, the optical element 336-2 is located between optical center 336-3 and element 316-3. Further, although optical center 336-3 is located on element 316-1; however, in some implementations, it may be beyond the edge of the array.
The inner columns 318-2 and 318-6 also have a structure where the optical center of one element is not located on that element. For example, in the embodiment shown in
Similarly, column 318-6 includes three vertically stacked elements and the optical center 334-1 of optical element 314-1 is located below the optical center 334-2 of optical element 314-2, thereby positioning optical center 334-2 between optical center 334-1 and element 314-1. As shown in
In some implementations, optical centers 332-1 and 334-1 may be beyond the edge of the array (e.g., optical center 334-1 can be positioned below the bottom edge of the bottom element of column 318-6). Using these structures, the embodiments of the present disclosure can be used to improve the energy projected onto the sensor behind the array
Embodiments of the present disclosure allow for wider field of view and/or a more suitable form factor for some implementations. This can be accomplished, for example, by optimizing the focal length on each element of a Fresnel lens array to, for instance, generate balanced energy on each pyroelectric (pyro) detector for a target object in the field of view (a human) at distance while limiting the size of the off-axis lens elements contained in the middle row (320-2) of the outer regions to a size that improves and potentially maximizes lens area energy efficiency (e.g., maximize the proportion of the energy of the human at distance that reaches the lens element that then lands on pyro elements, minimizing the energy reaching the lens element that goes above, below, left, or right of the pyros' detection elements); then, implementing complimentary lens elements above and/or below this lens element to direct and maximize energy from this same target at distance onto the pyros detection elements again minimizing energy going above or below the pyros detection elements.
Here, the outer right edge (as these lens elements form the pyro detection zones labeled Pair 7 in
The size of the off axis elements beyond which a severe decline begins to occur between percent energy increase on the pyro detector versus the percent area added to the lens element can be determined through experimentation. For example, in some embodiments, the outside side lens element sizes of the embodiments of the present disclosure are limited at the point where the energy increase drops below 70% of the element area increase.
In this example, the left and right Fresnel lenses 326 are of the same focal length (e.g., 48 mm). Using the same focal length, an embodiment of the present disclosure can create a lens portion from a defined area of a master template used for constructing Fresnel lenses.
In embodiments of the present disclosure, the lens array has at least one column of two or more vertically stacked lens elements wherein the element at the top will have its optical center below the optical center of the neighboring element below it. And, if more than two elements exist in this vertical column, the lens array may have a bottom lens element whose optical center is vertically above the optical center of the element directly above it. When these vertically stacked elements, which display a reverse vertical progression of optical centers (e.g., 310-1 and 310-3 described above with respect to
In some embodiments, in, for example, a flat lens array with a horizontal field of view greater than 80°, this superimposing of detection zones can double or triple the energy on the pyro detector for motion in these detection zones as compared to the traditional devices. The embodiments of the present disclosure allow a flat lens array to achieve a wider field of view than traditional flat lens arrays.
The fabrication of the Fresnel lens array follows the same processes used to fabricate the Fresnel lenses used in motion detectors and occupancy detection PIR systems. For example, the process can include diamond turning the focal length masters from a brass plate, creating multiple copies via placing the masters in Nickel electroforming baths to grow negative copies, machining the electroform copies to the element sizes noted on an array schematic, assembling the machined elements into an array, placing this assembly in an electroforming bath to grow a Nickel copy of the array, machining this copy to fit into an injection molding tool cut to form the remainder of the lens geometry, then use high density polyethylene (HDPE) to injection mold the lenses. The resulting molded lens can then be placed in front of a pyroelectric sensor as shown in
As can be seen from the example of
For instance, the lenses of the one or more Fresnel lenses include lenses selected from focal lengths of: 8 mm, 10 mm, 16 mm, and 48 mm. In some such embodiments, the multiple columns of lens elements in the array are formed from defined areas from Fresnel lenses having focal lengths of: 8 mm, 10 mm, 16 mm, and 48 mm.
Further, in some embodiments, the focal lengths used in each of the sections of a particular column can be the same. Additionally, the focal lengths of the lens elements in the array can become greater from a central column to an outermost column on both a left side and a right side of the array. For example, in some embodiments, column 318-4 can have a focal length of 8 mm, 318-3 and 318-5 have a focal length of 10 mm, 318-2 and 318-6 have a focal length of 16 mm, and 318-1 and 318-7 have a focal length of 48 mm. One benefit of such an arrangement combined with complimentary lens elements in the outer regions is that it can optimize the energy that reaches the sensor.
Use of higher focal lengths at the outer elements of the array, the amount of energy can be increased. For example, the use of 48 mm focal length rather than 10 mm can result in a 650% improvement in energy reaching the sensor.
In one embodiment, a center portion 318-4 includes one or more defined areas of a Fresnel lens having a first focal length. The embodiment also includes a first inner portion (e.g., 318-3 or 318-5) including one or more defined areas of a Fresnel lens having a second focal length, a second inner portion (318-2 or 318-6) including one or more defined areas of a Fresnel lens having a third focal length, and an outer portion (318-1 or 318-7) including one or more defined areas of a Fresnel lens having a fourth focal length.
The focal lengths of the first through fourth focal lengths in such embodiments can be different focal lengths including those listed above, among other suitable focal length distances. They can be arranged in any suitable order, however, in some embodiments, the second focal length is the same or greater than the first focal length. The third focal length can also be greater than the second focal length. And, in some embodiments, the fourth focal length can be greater than the third focal length.
Further, in some particular embodiments, the second focal length is greater than the first focal length, the third focal length is greater than the second focal length, and the fourth focal length is greater than the third focal length. In this manner, the center portion is the smallest focal length and the outermost portion is the largest focal length and the focal lengths increase from the center to the outermost portion.
This can also be the arrangement on the left and right sides of the Fresnel lens array. In this way, the field of view of the array can be symmetrical as well as the zones of energy detection produced by the two sides of the array as can be seen in
As discussed above, in some embodiments, a second inner portion includes one or more defined areas of a Fresnel lens having a third focal length and, wherein the second inner portion contains two or more vertically stacked elements. The first stacked element can be adjacent to one side of a second vertical stacked element while the optical center of the second stacked element is located between the first stacked element and its optical center. In this manner, more energy can be provided to the surface of the sensor array. As discussed above with respect to
As illustrated, in some embodiments, the array can be 120 degrees, which is considerably wider than traditional Fresnel lenses, which can be 80-90 degrees with low energy collected in the outer detection zones in some implementations. Additionally, as discussed above, the amount of energy provided to the sensor can be greatly increased in the outer or off-axis detection zones as compared to traditional devices.
For the detection zones shown in
In order to construct such embodiments, Fresnel lens structures of differing focal lengths need to be utilized. Three examples are provided below.
It is these factors that define the focal length of the lens. Based on these factors,
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.
It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.
The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, various features are grouped together in example embodiments illustrated in the figures for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
Number | Name | Date | Kind |
---|---|---|---|
4375034 | Guscott | Feb 1983 | A |
4604524 | Kotlicki et al. | Aug 1986 | A |
4703171 | Kahl et al. | Oct 1987 | A |
4707604 | Guscott | Nov 1987 | A |
4757204 | Baldwin et al. | Jul 1988 | A |
4978843 | Yamakawa | Dec 1990 | A |
4990783 | Muller et al. | Feb 1991 | A |
5017783 | Mousavi | May 1991 | A |
5026990 | Marman et al. | Jun 1991 | A |
D331124 | Claytor | Nov 1992 | S |
D331126 | Claytor | Nov 1992 | S |
D340311 | Claytor | Oct 1993 | S |
5311024 | Marman et al. | May 1994 | A |
5442178 | Baldwin | Aug 1995 | A |
5577779 | Dangel | Nov 1996 | A |
5864381 | Neal | Jan 1999 | A |
6121876 | McKenney | Sep 2000 | A |
6137535 | Meyers | Oct 2000 | A |
6948692 | Leachman | Sep 2005 | B2 |
7488941 | Lee | Feb 2009 | B2 |
8629930 | Brueckner et al. | Jan 2014 | B2 |
9223063 | Hu et al. | Dec 2015 | B2 |
9500517 | Gupta et al. | Nov 2016 | B2 |
20080272281 | Stromberg et al. | Nov 2008 | A1 |
20120176668 | Saito et al. | Jul 2012 | A1 |
20120192919 | Mizuyama | Aug 2012 | A1 |
20120227796 | Dougherty | Sep 2012 | A1 |
20120274811 | Bakin | Nov 2012 | A1 |
20130126739 | Oi et al. | May 2013 | A1 |
20130321581 | Ei-Ghoroury | Dec 2013 | A1 |
20130338839 | Rogers et al. | Dec 2013 | A1 |
20140346362 | Filson et al. | Nov 2014 | A1 |
20150101667 | Benitez | Apr 2015 | A1 |
20150233595 | Fadell et al. | Aug 2015 | A1 |
20150248796 | Iyer et al. | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
103618849 | Mar 2014 | CN |
2010125615 | Nov 2010 | WO |
Entry |
---|
Murata Manufacturing Co., Ltd., “Pyroelectric Infrared Sensors,” muRata Innovator in Electronics, 25 pages, Oct. 1, 2012. S21J.pdf, http://www.murata.com/. |
Snap fit, power point document, downloaded May 11, 2017, pp. 1-17. |
Explore Plastic Injection, Sheet Metal, and more!, Bildergebnis für snap fit | Mechanical Engineering | Pinterest | Fit, Search and Craft, https://in.pinterest.com/pin/365002744786434665/, Dec. 8, 2017. |
Snap fit—Google Search, https://www.google.co.in/search?q=snap+fit&source=lnms&tbm=isch&s, Dec. 8, 2017. |
International Search Report and Written Opinion for Application No. PCT/US2018/046955, 16 pages, dated Dec. 17, 2018. |
Number | Date | Country | |
---|---|---|---|
20190056536 A1 | Feb 2019 | US |