This application is the non-provisional application of U.S. Patent Application No. 62/110,979, filed Feb. 2, 2015, which is incorporated by reference in its entirety for all purposes.
The present disclosure relates generally to lenses such as Fresnel lenses.
A Fresnel lens can be adhered to a window in an optical apparatus by liquid optically clear adhesive (LOCA). However, during adhesion the LOCA may spill over into grooves of the Fresnel lens, and the grooves can carry the LOCA into an active area of the lens potentially causing visual artifacts and altering the functional and cosmetic optical qualities of the lens.
In examples of the disclosure, one or more grooves along the circumference of a surface of the lens surrounding inner grooves of the Fresnel lens can form a barrier ring that prevents the LOCA from reaching the inner grooves. The lens can include a first set of one or more grooves in the surface that are not concentric with the circumference of the surface, and a second set of one or more grooves in the surface that are concentric with the circumference of the surface and that surround the first set of grooves, forming a barrier ring.
For a better understanding of the various described embodiments, reference should be made to the Detailed Description below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
In the following description of examples, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the disclosed examples.
A Fresnel lens can be adhered to a window in an optical apparatus by liquid optically clear adhesive (LOCA). However, during adhesion the LOCA may spill over into grooves of the Fresnel lens, and the grooves can carry the LOCA into an active area of the lens potentially causing visual artifacts and altering the functional and cosmetic optical qualities of the lens. In examples of the disclosure, one or more grooves along the circumference of a surface of the lens surrounding inner grooves of the Fresnel lens can form a barrier ring that prevents the LOCA from reaching the inner grooves.
Although examples described herein refer to a Fresnel lens, the examples are not so limited and apply more generally to any lenses including one or more grooves. Further, although some examples described herein illustrate a barrier ring including multiple grooves, the examples are not so limited and apply more generally to a barrier ring including only a single groove. Further, although some examples described herein illustrate continuous grooves, the examples are not so limited and apply more generally to lenses with multiple continuous grooves along a single curve.
As illustrated in
For example, the lens 200 may be adhered, on an additional surface of the lens opposite the surface that includes the first and second sets of grooves, to a window, similar to the optical apparatus illustrated in
In some examples, the grooves of the second set define an annular portion of the surface surrounding the first set of grooves. Although the second set of grooves 204 are concentric with a circumference of the lens 200 in
In some examples, the shape of the first set of grooves is configured to optimally refract light (e.g., to collimate light as in a Fresnel lens), and the shape of the second set of grooves is configured to optimally catch excess liquid adhesive. For example, in
In some examples, the lens can include an additional surface opposite the surface that includes the first and second sets of grooves, and the method can further include adhering (407) the additional surface of the lens to a window (e.g., as illustrated in
In some examples, the method illustrated in
Examples of the disclosure can be advantageous in providing a Fresnel lens with barrier rings that prevent LOCA from entering inner grooves of the lens, thereby preventing visual artifacts in the Fresnel lens.
Although the disclosed examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosed examples as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4082433 | Appeldorn | Apr 1978 | A |
5138495 | Shiono et al. | Aug 1992 | A |
5373519 | Siono | Dec 1994 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5561558 | Shiono | Oct 1996 | A |
5742433 | Shiono | Apr 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6409141 | Yamazaki | Jun 2002 | B1 |
6654172 | Pond | Nov 2003 | B2 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7483220 | Kittelmann | Jan 2009 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
8210677 | Fermigier | Jul 2012 | B2 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
20060197753 | Hotelling | Sep 2006 | A1 |
20110310619 | Sassoon | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
H01282501 | Nov 1989 | JP |
2000-163031 | Jun 2000 | JP |
2002-342033 | Nov 2002 | JP |
2003-322705 | Nov 2003 | JP |
2003322705 | Nov 2003 | JP |
Entry |
---|
English machine translation of JP 2003322705 A. |
Lee, S.K. et al. (Apr. 1985). “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25. |
Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages. |
Rubine, D.H. (May 1992). “Combining Gestures and Direct Manipulation,” CHI ' 92, pp. 659-660. |
Westerman, W. (Spring 1999). “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 364 pages. |
Number | Date | Country | |
---|---|---|---|
20160223720 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62110979 | Feb 2015 | US |