This invention relates to a friction damper device for a washing machine in whose housing is arranged a washing unit with a tub, a washing drum which is rotationally mounted in the tub and a drive for the washing drum, the washing unit being supported in an elastic manner by at least one damper counter to the lower frame part of the housing.
In connection with washing machines different systems are known for mounting the washing unit, which includes of a tub, a drive for the tub and a washing drum. In so-called upright systems the washing unit is normally supported in an elastic manner by a plurality of spring legs relative to a lower frame part of the housing of the washing machine. In so-called suspended systems, i.e. mixed systems, the washing unit is suspended at a plurality of points on an upper frame part of the housing by means of springs and is mounted so that the vibrations are damped by means of dampers in respect of a lower frame part of the housing.
DE 30 43 550 C2 discloses a fully automatic drum washing machine designed for spinning, whose washing unit is supported on the machine base with sprung, damping spring legs. Each spring leg is fastened to the housing frame of the washing machine at its lower end by means of two rubber rounds between which is clamped a base plate of the housing frame. Upwardly directed forces are transmitted to the upper rubber round and downwardly directed forces are transmitted to the lower rubber round.
DE 36 26 065 C2 describes a friction damper device for a washing machine whose washing unit is freely suspended on the housing by means of tension springs. Between the tub and base plate of the washing machine are provided friction damper devices whose task is to damp unbalancing vibrations of the washing unit during the operation of the washing machine, particularly when passing through the critical speed, when the washing drum is accelerated from a low washing speed to a high spinning speed. For this purpose each friction damper device has a friction plate fastened to the tub against which friction linings of friction heads are pushed in pairs on opposite sides, which heads are each fastened to an arm of a clamping or retaining strap. A motor friction switch, which is able to push the friction heads against the pre-tension force of the clamping and retaining straps, grips the arms of the clamping and retaining straps which normally press the friction linings against the friction plate. The friction switch is designed as a piston/cylinder drive that can be loaded with a pressure fluid. Alternatively the friction switch may comprise an electric motor and an adjusting spindle. The damping forces of the friction damper device can therefore be increased after the critical speed is passed.
The object of this invention includes providing a friction damper device that is of relatively simple construction and guarantees safe operation of the washing machine.
This object is achieved by a friction damper device for a washing machine with the features of described in the claims. Advantageous designs of the invention are also described in the dependent claims.
Another advantage includes the fact that the present friction damper device is of relatively simple construction and is therefore inexpensive. A further advantage of the invention includes the fact that in the event of a sudden power failure, for example if the washing machine is accidentally switched off during its operation, the friction damper device according to the invention regains its damping force immediately and automatically, thereby guaranteeing safe “passage” through the lower speed range until the machine stops. The present friction damper device can, in particularly, be effectively switched in a speed range of the washing drum from approximately 0 to 300 rpm, which also includes the resonance range for the spinning acceleration. Above this range, i.e. during spinning, the damper forces do not affect the oscillating behavior of the washing unit, which is why the present friction damper device can be either completely switched off electrically or switched so that its damping force is reduced, thereby considerably improving the oscillating behavior of the entire washing machine. In particular, the vibratory behavior of the entire appliance is improved and noises are reduced.
The present friction damper device is switched so that its damping effect is restored when the upper spinning speed range is departed from.
The present friction damper device can be used for upright and suspended systems, as well as in mixed systems.
The invention is explained in greater detail in the following with reference to the drawing in which advantageous exemplary embodiments are represented.
According to
In order to compensate selectively for any unbalance, which is necessary particularly in a speed range of approximately 0 to 300 rpm, because this range includes the resonance range for the spinning acceleration, this invention provides a friction damper device 29 whose damping force can be switched or controlled electrically. Since the damping forces would disturb the oscillating behavior of washing unit 2 above the above-mentioned speed range, the damping force of this friction damper device 29 can be switched or reduced quite effectively above this range so that the oscillating and vibratory behavior of the entire washing machine is considerably improved and the noise generated is reduced in this upper speed range. When the upper speed range is again departed from after spinning, the damping force of this friction damper device 29 is restored. Since this friction damper device 29 is switched or controlled electrically against the force of a compression spring 14, as will be explained in greater detail below, it is possible for friction damper device 29 to retain its damping force immediately and automatically after a sudden power failure, for example if the washing machine is accidentally switched of, thereby guaranteeing safe passage through the lower speed range until the machine stops.
According to
A further friction lining 17, which is preferably also annular in shape, is located on the side of piston rod 10 opposite friction lining 16, so that lining 17 bears partially, and preferably flush with its friction surface 27 against the peripheral surface of piston rod 10, its side facing away from piston rod 10 being preferably fastened, in particular glued, to an inner wall 25 of housing part 13 also running in a circular course.
Slide 15 can be actuated by an electromagnetic actuator 20 against the force of compression spring 14, in the manner shown in
Friction damper device 29 previously described operates in the following manner. Actuator 20 is energized in the lower speed range from approximately 0 to 300 rpm of washing drum 4 so that compression spring 14 exerts its full effect and presses friction lining 16 against piston rod 10 so that the latter is retained between friction linings 16 and 17 by friction in a damping manner and an action that damps the vibrations of washing unit 2 is exerted.
If no damping action is to be exerted in a higher speed range, i.e. in the spinning range, electromagnetic actuator 20 is energized so that friction lining 16 is pulled away from piston rod 10 by a movement of slide 15 against the force of compression spring 14. Piston rod 10 is not then damped. As soon as electromagnetic actuator 20 is de-energized, slide 15 is released and compression spring 14 again presses friction lining 16 against piston rod 10.
It is pointed out that other “pulling” or “pushing” electromagnetic actuators with associated compression or tension springs may also be used instead of electromagnetic actuator 20 described above, which generates a force “pulling” slide 15 when energized, provided that these springs operate in the manner explained above.
Instead of the switching off and on of actuator 20, explained above, where the conditions “damping of the piston rod” or “non-damping of the piston rod” are reached, it is also conceivable to activate electromagnetic actuator 20 by means of a control unit 30 so that the compressive force of compression spring 14 is increased by a predetermined movement of slide 15 to a desired extent in order to achieve a desired greater or smaller damping force on piston rod 10. In other words, a predetermined damping profile can be set by the specific activation of electromagnetic actuator 20 by control unit 30 as a function of the current speed of washing drum 2.
A further embodiment of this friction damper device is explained in the following with reference to
The actuator is preferably a memory metal part 32 arranged on piston 37, which part, when energized, generates a force which pulls or moves friction lining 31, pretensed by the energy store counter to the inner wall of cylinder 38, away from the inner wall. The damping effect of damper 8 is increased here. Friction lining 31 is suitably fastened, in particular glued, to a support part 36.
The memory metal part can be energized in various ways. The introduction of thermal energy may be preferably provided for this purpose.
In particular, a further friction lining 35 is preferably fastened, preferably glued, to a further support part 39 on piston 37, which part is connected to support part 36 so that it is able to rotate about a fulcrum 40. Support part 36 and further support part 39 run at least partially around the periphery of piston 37 and engages in a peripheral groove 41 (
Number | Date | Country | Kind |
---|---|---|---|
102004047999.2 | Oct 2004 | DE | national |
This application is a Divisional, under 35 U.S.C. §121, of U.S. application Ser. No. 11/664,225, filed Feb. 27, 2008, which is a U.S. National Stage Application of International Application No. PCT/EP05/054958, filed Sep. 30, 2005, which designated the United States; this application also claims the priority, under 35 U.S.C. §119, of German Patent Application No. 10 2004 047 999.2, filed Oct. 1, 2004.
Number | Date | Country | |
---|---|---|---|
Parent | 11664225 | Feb 2008 | US |
Child | 13010969 | US |