From a first aspect, the present invention relates to a drive device for intermittent driving of a conveyor that partly surrounds a drum rotatable around a centre axis, which drive device comprises drive member and motion transmission member.
From a second aspect, the invention relates to a method for driving such a conveyor.
Conveyors of the type in question are used in many different applications. Such a one is in animal farming such as of, e.g., cattle and pigs. In such an application, it is previously known to form animal-farming spaces with movable floor, with the floor consisting of such a conveyor for the removal of the dung and/or feed of fodder. Consequently, in this application the conveyor has a considerable width and is driven slowly and intermittently. A conveyor in such an application is disclosed, e.g., in WO 02/071836.
In many cases, a conveyor running over a drum shows a tendency of being displaced laterally along the same. Occasionally, large forces are required in order to counteract this and hold the belt in place. It may be particularly difficult if the belt is wide and of steel, as usual in the application mentioned above. Measures in order to, in that way, retain the belt may become cost-demanding and cause friction loss and belt wear. Another possibility is to let the drum rotate in the opposite direction at regular intervals, a laterally retrograde motion of the belt being obtained. The disadvantage, though, is that the conveyor trails in a backward motion in the conveying direction.
In these circumstances, the object of the present invention is to provide a drive device for a conveyor of the kind in question and a method for driving such a one that brings about correction of the lateral position of the belt on the drum without the occurrence of the disadvantages pointed out above.
In the first aspect of the invention, the object set up has been attained by the fact that a drive device of the kind defined in the preamble of claim 1 comprises the special features
By the fact that the drum thereby is imparted a reciprocating rotary motion, a correction of possible lateral motion of the belt upon each returning rotary motion is brought about. Thanks to the belt during the returning motion of the drum being kept at rest, a unidirectional motion is maintained so that backward conveyance of goods is avoided. By the fact that the drive device thereby fulfills the double function of driving the belt in the intended conveying direction as well as providing correction against lateral motion, large cost savings in comparison with having separate drive device and correction device are attained.
According to a preferred embodiment of the invented drive device, the rotary motion of the drum is substantially equally large in both rotary directions. Thereby, optimum correction of the lateral displacement is attained.
According to an additional preferred embodiment, the drive member comprises a pressure-actuated bellows and a mechanical spring. Accordingly, the stated reciprocating motion of the drive member is attained in a very simple and expedient way. The same gets a minimum number of movable parts and becomes robust and insensitive to disturbances. For instance, the bellows may be made as a woven hose similar to a firehose, and a tension spring may be arranged parallel to the bellows. Of course, alternatively a compression spring may be used. Further, the bellows may by itself be formed with resilient properties, the need for an additional spring being eliminated.
According to an additional preferred embodiment, the motion transmission member comprises:
Such a formed motion transmission member provides the stated motion pattern by means of very few movable parts and with uncomplicated co-operation thembetween. This entails that the device becomes inexpensive to manufacture as well as in maintenance. The simplicity also entails great operational reliability even in heavily dirty surroundings, which frequently may be at hand.
According to an additional preferred embodiment, the carrier member and the connection of the drive member with the arm are located on one side of a plane through the centre axis of the drum, and the neck and the pressure element are located on the opposite side. Accordingly, an efficient transfer of force is attained by the use of leverage.
According to an additional preferred embodiment, the pressure element is rod-shaped and parallel to the drum and extends along the major part of the length of the drum. Thanks to such an extension in the longitudinal direction, the force becomes distributed over a large area so that concentrated loads are avoided and so that obliquely directed forces are avoided.
According to an additional advantageous embodiment, the drive member is controlled to alternate between inactive, relatively long periods, when it is idle, and active, relatively short periods when it executes some strokes. This makes the invention expedient to utilize in applications where conveyance of material is required only during certain short periods.
According to an additional preferred embodiment, the conveyor is a movable floor of an animal-farming unit. The present invention is primarily developed for use in such an application, and the advantages thereof are particularly valuable in this connection.
The above-mentioned preferred embodiments of the invented drive device are defined in the claims depending on claim 1.
In the second aspect of the invention, the object set up has been attained by the fact that a method of the kind defined in the preamble of claim 9 comprises the special measures that the drive takes place while alternating between a first and a second stage, during the first stage the drum being imparted a motion in a first rotary direction while the conveyor being imparted a motion, and during the second stage the drum being imparted a motion in a second rotary direction while the conveyor being kept at rest.
According to preferred embodiments of the invented method, this is exercised by means of the invented drive device and particularly by means of anyone of the preferred embodiments of the same.
Accordingly, advantages of the corresponding types that have been accounted for above regarding the invented drive device are gained.
The invention is explained closer by the appended detailed description of preferred embodiment examples of the same, reference being made to the appended drawing figures.
In
The drum 3 constitutes the drive drum of the conveyor, and the same drum is driven by means of the drive device so that the drum 3, during short periods, executes some reciprocating rotary motions and so that the conveyor, in that connection, moves intermittently in the direction of the arrow A.
The drive device comprises a unit at each end of the drum 3 and a rod that connects the same and runs parallel to the drum 3.
Each unit comprises a bellows 5 and a tension spring 6 and an arm 7 connected with these, which arm at the opposite end thereof is connected with the rod 4. The arm 7 is rotatably mounted on an axle journal 8 attached to the end surface of the drum 3. Further, on the end surface of the drum there is a carrier member 9 in the form of a protruding pin.
The figure shows the drive device in a first end position when the bellows 5 is fully expanded.
The mode of operation of the drive device is most clearly seen in
In
When the bellows 5 is decompressed, the spring 6 will pull the upper end towards the right in the figure. This entails that the arm initially will be rotated clockwise around the axle journal 8. During this initial rotation, the rod 4, which in the figure abuts against the belt 1, will be released from the abutment against the belt. The initial rotation is stopped shortly afterwards by the fact that the arm 7 has been rotated to abutment against the carrier member 9. When the spring 6 then continues to pull the upper end of the arm 7 towards the right, the connection of the arm with the drum 3 via the axle journal 8 and the carrier member 9 entails that the drum is rotated clockwise. The friction between the drum 3 and the belt 1 is, in that connection, not sufficient in order to transmit motion to the belt 1, which consequently is at rest during this phase.
After completed compression of the bellows, the position shown in
Consequently, the result of some motion cycles becomes that the drum is rotated reciprocating some times while the conveyor moves unidirectionally and intermittently forward. The rotary motion is relatively limited, normally less than 30°. Therefore, the drum 3 does not need to be circular cylindrical but it is enough that it has a winding of about 210°, such as is the case with the drum shown in the figures.
The position of the centre axis 0 of the drum can be adjusted by means of a belt tension device 12.
As mentioned, the embodiment example shown in the figures relates to an application where the conveyor 1 consists of a movable floor of an animal-farming device. The same may be an individual box or a larger space for a plurality of animals. Here, the object of the conveyor 1 is to convey away dung and/or feed fodder, bedding and the like. Consequently, here the conveyance operation is limited and the speed of motion is small. This means that the device is inactive during the major part of the time. It may be suitable that periods of about 30 min inactivity alternate with periods of some or a few minutes when the device is active and executes a number of strokes.
Number | Date | Country | Kind |
---|---|---|---|
0302734 | Oct 2003 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2004/001478 | 10/14/2004 | WO | 00 | 4/17/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/037690 | 4/28/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1946452 | Bridges | Jun 1934 | A |
3417853 | Mojden et al. | Dec 1968 | A |
4432450 | Dorigo | Feb 1984 | A |
4787128 | Wickham | Nov 1988 | A |
5755548 | Gaasch et al. | May 1998 | A |
6513649 | Lauzon et al. | Feb 2003 | B1 |
Number | Date | Country |
---|---|---|
62096215 | May 1987 | JP |
2038996 | Jul 1995 | RU |
436019 | Nov 1984 | SE |
WO 02071836 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070137986 A1 | Jun 2007 | US |