This application is a PCT International Application of U.S. Provisional Patent Application No. 61/003,030 filed on Nov. 14, 2007. The disclosure of the above application is incorporated herein by reference.
The present invention relates to selectively engagable fluid pumps which are used in a transfer case or transmission.
Pumps are generally known and used for a variety of applications in transmissions and transfer cases. One of the most common ways pumps are used in these types of applications is for the generation of fluid pressure which can be used to actuate clutch assemblies or the like. One particular type of pump commonly used in transmissions and transfer cases is what is known as a “gerotor pump.”
A gerotor pump usually consists of an inner gerotor which is mounted on a shaft, and an outer gerotor which circumscribes the inner gerotor. The inner gerotor usually has a series of lobes which are engagable with a corresponding series of lobes on the outer gerotor such that the inner gerotor transfers rotational force to the outer gerotor as the shaft and inner gerotor rotate. However, the outer gerotor usually has a larger number of lobes such that the diameter of the inner gerotor and the outer gerotor are different. The space between the inner gerotor and outer gerotor created by the different number of lobes causes a pumping action to be created when the inner gerotor and outer gerotor rotate.
A common drawback well known with gerotor pumps is an inability to deactivate the gerotor pump. The inner gerotor is typically mounted on the shaft through the use of a spline connection, and because the shaft is rotating, the inner gerotor is constantly driving the outer gerotor as the shaft rotates, regardless of whether a pumping action is needed or not. This often leads to situations where pumping action by the gerotor pump is unnecessary. Having these types of pumps active when the pumping action is not necessary can reduce the efficiency of the transmission or the transfer case.
Accordingly, there exists a need for a pump powered by a rotating shaft in a transmission or a transfer case which is selectively engagable.
The present invention is a pump which may be used in a transmission or transfer case. The pump includes an actuator mounted on a rotatable shaft which may or may not be a continuously rotating shaft. There is also a pumping device mounted on the shaft, which is selectively engageable with the actuator. When the actuator is actuated, the pumping device will receive rotational force from the shaft, creating a pumping action.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
A friction drive pump assembly according to the present invention is generally shown in
Referring to
Adjacent to the friction drive sleeve 32 is a first washer 46. The first washer 46 includes a notch 48 which partially receives a ball bearing 50. The ball bearing 50 is also partially received in a notch 52 on the shaft 14. The ball bearing 50 ensures that the first washer 46 rotates with the shaft 14. Also mounted on the shaft 14 is a thrust washer 54, and a second washer 56. Located between the second washer 56 and the sprocket 18 is a spring member in the form of a Belleville Spring 58. The Belleville Spring 58 includes a series of tabs 60 which are received in a series of corresponding notches 62 in the second washer 56. The sprocket 18, the Belleville Spring 58, and the second washer 56 rotate in unison.
The sprocket 18 rotates with the shaft 14 through the use of a spline connection 64. The spline connection 64 allows the sprocket 18 to slide along the shaft 14, and apply force to the Belleville Spring 58, the function of which will be described later.
Referring now to
In operation, the shaft 14 may be used in a transmission or transfer case, or another device in which a pumping action for fluid is necessary. The shaft 14 will rotate and receive rotational power from another shaft or gear in the transmission or transfer case. Fluid is drawn into the pump 12 through the port 30. The port 30 receives fluid from a sump (not shown). As the shaft 14 rotates and if the clutch assembly 16 is actuated, the pump 12 draws in fluid from the port 30, and forces the fluid into the first set of side bores 68. The fluid is then forced to flow through the bore 66, and out of the second set of side bores 70. The fluid flowing out of the second set of side bores 70 can be used to lubricate other various components mounted on the shaft 14. When the pump 12 is not actuated by the clutch assembly 16, the pump 12 will only transfer a minimal amount of fluid.
When it is desired to have the pump 12 transfer an increased amount of fluid, the clutch assembly 16 is actuated; the clutch assembly 16 will apply force to the sprocket 18. The sprocket 18 will translate to the right when looking at
If the Belleville Spring 58 is fully compressed, the friction drive sleeve 32, and therefore the inner gerotor 22, will have the same angular velocity as the shaft 14, and the maximum amount of pumping action will be created. When the clutch assembly 16 is actuated in this manner, the minimum amount of thrust (with the thrust being the lateral force applied to move the sprocket 18 rightward when looking at
It should be noted that when the clutch assembly 16 is deactivated, there will still be a light amount of thrust applied to the friction drive sleeve 32; the thrust will be between 150-200 N, which is applied to the friction drive sleeve 32 from the Belleville Spring 58. Therefore, rotational force will still be transferred from the shaft 14 to the friction drive sleeve 32. This will result in a drive capability for the pump 12 being approximately 1.5 N-m. This reduced drive torque limits the speed of the pump 12, and reduces pumping losses. The reduced pumping losses will improve the efficiency of the friction drive pump assembly 10 because the pump 12 has the ability to be actuated only when needed.
The advantages of the present invention can also be seen in
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/011282 | 9/30/2008 | WO | 00 | 7/19/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/064337 | 5/22/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3299824 | Gauthier | Jan 1967 | A |
4540347 | Child | Sep 1985 | A |
6702703 | Gervais, III et al. | Mar 2004 | B2 |
20050202920 | Kelley, Jr. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
64-004886 | Jan 1989 | JP |
04-100087 | Aug 1992 | JP |
08-121355 | May 1996 | JP |
10-1998-0055180 | Sep 1998 | KR |
Number | Date | Country | |
---|---|---|---|
20100316519 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
61003030 | Nov 2007 | US |