This application claims priority to Chinese Patent Application No. 201711160775.5, filed on Nov. 20, 2017, the disclosure of which is incorporated herein by reference in its entirety.
The present disclosure relates generally to friction hinges, and more particularly to a friction hinge with restricted motion in one direction.
A friction hinge is a hinge that provides frictional engagement between two objects, allowing any rotation angle between them. In order to meet the needs of the market there have been developed many types of friction hinges. However, at present there is no friction hinge with resistance in only one pivoting direction, that is, such a friction hinge can be pivoted in one direction without resistance and produce a resistance when being pivoted in the other direction.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the exemplary embodiments described herein. However, it will be understood by those of ordinary skill in the art that the exemplary embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the exemplary embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
With reference to
The support member 1 includes a barrel 11 and a cover plate 12. The barrel 11 has an upper opening 111. The cover plate 12 covers the upper opening 111 of the barrel 11. The cover plate 12 has a shaft hole 121.
The restricting module 2 is mounted on the support member 1. With reference to
The mounting base 21 is secured to the barrel 11 of the support member 1. The mounting base 21 has a front surface 211, a rear surface 212, a mounting recess 213, an air flow opening 214, at least one post 215, and a pivot hole 216. The mounting recess 213 is formed in the front surface 211. The mounting recess 213 has a recess surface 2131 and a recess opening 2132. The air flow opening 214 communicates with the mounting recess 213. The post 215 extends from the recess surface 2131 of the mounting recess 213 adjacent to the air flow opening 214. The pivot hole 216 is formed in one side of the mounting base 21. The control plate 22 is rotatably mounted in the mounting recess 213 of the mounting base 21. The control plate 22 is annular and has a central hole 221, at least one curved hole 222, and at least one radial hole 223. The central hole 221 is aligned with the air flow opening 214 of the mounting base 21. The curved hole 222 is adjacent to the central hole 221. The post 215 of the mounting base 21 extends through the curved hole 222 and thereby locates the control plate 22 on the mounting base 21. The radial hole 223 is adjacent to the curved hole 222. The valve 23 is movably mounted between the mounting base 21 and the control plate 22. The valve 23 has a valve body 231 and a pin 232. The pin 232 extends from the valve body 231. The pin 232 is inserted in the radial hole 223 of the control plate 22. The control plate 22 can be rotated clockwise to move the valve 23 away from the air flow opening 214 of the mounting base 21, or can be rotated counterclockwise to move the valve 23 to protrude into the air flow opening 214 of the mounting base 21. Thus, size of the air flow opening 214 can be varied. The push block 24 has a push body 241 and a push rod 242. The push block 24 is secured through the push body 241 to the control plate 22. The push rod 242 extends from the push body 241. The cylinder 25 is secured in the mounting recess 213 of the mounting base 21 adjacent to the push block 24. The cylinder 25 defines an interior chamber 215. The interior chamber 215 has a front open end 2511 and a lower open end 2152. The piston rod 26 is slidably disposed in the interior chamber 251 of the cylinder 25. The piston rod 26 has a lower portion 261 protruding from the lower open end 2512 of the interior chamber 215 of the cylinder 25 and the lower portion 261 abuts the push rod 242 of the push block 24. The return spring 27 has two ends, one end is attached to the recess surface 2131 of the mounting recess 213 of the mounting base 21 adjacent to the control plate 22, and the other end is attached to the control plate 22. The protective panel 28 covers the recess opening 2132 of the mounting recess 213 of the mounting base 21. The protective panel 28 has an aperture 281 aligned with the front open end 2511 of the interior chamber 251 of the cylinder 25. The mounting panel 29 is disposed between the control plate 22 and the protective panel 28.
In a preferred exemplary embodiment, the restricting module 2 includes three valves 23. The mounting base 21 has three posts 215, and the control plate 22 has three curved holes 222 and three radial holes 223.
With reference to
When the control panel 32 is pivoted to rotate the pivot base 31 in a clockwise direction toward the rear surface 212 of the mounting base 21, the pivoting member 3 can be pivoted without resistance. With reference to
The exemplary embodiments shown and described above are only examples. Many details are often found in the art such as the other features of a friction hinge. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, especially in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the exemplary embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2017 1 1160775 | Nov 2017 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
685403 | Hughes | Oct 1901 | A |
1176014 | Wyeth et al. | Mar 1916 | A |
1701022 | Thornton | Feb 1929 | A |
2490258 | Diebel | Dec 1949 | A |
3952365 | Grisebach | Apr 1976 | A |
4280599 | Bardfeld | Jul 1981 | A |
5193228 | Murasawa | Mar 1993 | A |
5390770 | Miyahara | Feb 1995 | A |
5664286 | Sorimachi | Sep 1997 | A |
5867866 | Chen | Feb 1999 | A |
5996132 | Sorimachi | Dec 1999 | A |
6840355 | Iwashita | Jan 2005 | B2 |
7204354 | Tomonaga | Apr 2007 | B2 |
7850219 | Townson | Dec 2010 | B2 |
7966693 | Choi | Jun 2011 | B2 |
8099832 | Shuker | Jan 2012 | B1 |
8510911 | Sawa | Aug 2013 | B2 |
8516657 | Yoshida | Aug 2013 | B2 |
9027979 | Ozaki | May 2015 | B2 |
9926732 | Bacchetti | Mar 2018 | B2 |
20080010778 | Tse | Jan 2008 | A1 |
20180230725 | Vinoth Kannan | Aug 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20190153761 A1 | May 2019 | US |