This invention is a friction management system for improving productivity, safety and operation of traveling cranes, in particular portal cranes, by applying a liquid or solid friction modifier (FM) in precisely controlled quantities to the wheel tread and flanges of one or more wheels of the lead trucks. This reduces the lateral forces, high current draw trips, and high noise levels and improves productivity through increased capacity for number of lifts with the crane.
Smooth flowing friction modifier fluid is preferred over solid or slurry because the application rate can be controlled accurately and also because this smooth fluid covers and penetrates the rough surfaces more completely. At least one set of nozzles/applicator is installed on the lead wheel of the lead trucks for FM application to the wheel tread and the two flanges. The pressurized fluid FM is preferably provided to the nozzles 25 equipped with solenoid-controlled valves. Pressure may be developed by a pump, pressurized tank or other means. The FM application is preferably in the form of a V-jet aimed in such a way that the whole tread 27 and both flanges 23 of the wheel 17 are coated by the spray 26. Other jet types and multiple jets may also be used, although they are not preferred.
The rate of application of FM may be controlled by changing the duration of the valve opening in each second. For the efficient use of FM, the nozzles 25 may be installed on the lead and trailing trucks. However, nozzles may be installed on each truck without departing from the scope of the present invention. To reduce FM wastage, the trailing truck nozzles may be shut off during forward movement of the crane by using current sensors on truck motor current wires to determine the direction of movement of the crane. The duration of valve opening, which controls the FM application rate, may be increased or decreased as the current draw changes. Fluid tanks, either equipped with pumps or pressurized, may be located above the lead and trailing trucks, as illustrated in
The application rate control can be achieved in several discrete steps, according to an example described herein, or as a continuous function. By this method, just enough FM is applied for the above benefits to the crane without any loss of traction.
As illustrated in
The direction of motion of the crane is shown by an arrow 43. For this motion, the nozzles 33, 34 of the lead truck 32a are activated to apply the friction modifier to the wheels. Preferably, each electrical line supplying power to a truck motor includes a sensor for measuring the current draw and direction of travel of the truck, which are used to determine the amount of FM applied by the nozzles, as described below. The nozzles 35, 36 of the trailing truck 32b do not operate during forward movement of the crane, i.e., movement in the direction of arrow 43. The FM applied to the wheels by nozzles 33, 34 is then transferred to the rail 37, 38. It then modifies the friction for all the wheels of the trailing trucks. Of course, if the crane is moved in the opposite direction, then truck 32b becomes the leading corner truck, in which case its nozzles 35, 36 are actuated by the controller 39 and the nozzles 33, 34 of the now-trailing corner truck 32a are preferably closed to conserve FM.
The control logic of the invention is as follows. Portal cranes are moved through the dock area at a slow, steady speed typically between 2 and 3 miles per hour. The amount of current draw of the truck motors is directly dependent on the rolling friction of the crane wheels. However, the current draw generally shows fluctuations and oscillations, so it may be preferable to average the current draw. The average current draw of the truck motors is nearly steady and also directly dependent on the rolling friction of the crane wheels. For this reason, the average current draw is a good measure of the energy being consumed in wheel friction. As the amount of FM that needs to be applied to maintain low lateral friction of the wheels on curves is also directly related to the energy consumed in wheel friction, the rate of FM application may be expressed as a function of the average current draw, which can be a linear function or a power function. This will also depend on the characteristics of the FM.
The control can also be done in steps. This is somewhat preferable when functionality of relationship is not fully established. One example of such a stepwise control function is shown below in Chart 1.
Chart 1 shows five discrete zones of control in the first column. For each zone there is a corresponding range of total current load (second column), which in this case is the sum of electrical readings from two current sensors reading the current draw of the motors on the front half A1 and another one for the trailing half A2 of the motors. The third column shows the nozzle open duration in milliseconds which determines the rate of application of the FM every second. Thus, the amount of FM applied per second increases with the current load on the motors. In a preferred embodiment, the current sensors also determine the direction of movement of the crane and FM is only applied to the wheels of the foremost or leading trucks. In most cases, the operation of the crane will be in the first two zones (0 and 1(A)) and only occasionally will the operation turn to Zone 2 (B). It will be appreciated that actuation of the nozzles may be carried out by a continuous function or a different stepwise function without departing from the scope of the present invention.
The nozzles of each truck are preferably actuated independently of each other, such that the wheels or rail associated with each truck is treated according to its unique needs. Accordingly, the operation illustrated in Chart 1 is preferably carried out separately for each truck outfitted with a spray nozzle. When properly lubricated, the crane will operate with significantly reduced noise, typically a decrease in the range of 20 decibels, and high current trips will be substantially eliminated, without compromising the traction of the wheels.
It will be understood that the embodiments of the present invention which have been described are illustrative of some of the applications of the principles of the present invention. Numerous modifications may be made by those skilled in the art without departing from the true spirit and scope of the invention, including those combinations of features that are individually disclosed or claimed herein. For these reasons, the scope of the invention is not limited to the above description but is as set forth in the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/746,605, filed May 5, 2006.
Number | Date | Country | |
---|---|---|---|
60746605 | May 2006 | US |