The field of the present invention is that of friction plates. More particularly the present invention relates to friction plates used in wet friction clutch modules in automotive transmissions for car and truck vehicles.
Currently, most if not all friction plates used in automotive transmissions are fabricated from steel stampings. Steel as a commodity has most recently experienced a high demand that has highly escalated its cost. To meet various environmental, economic, and national defense concerns, there has been an increased demand for fuel efficiency in automotive vehicles. Accordingly, there is a desire to achieve weight and cost savings in vehicle components.
To make manifest the above noted desires, a revelation of the present invention is brought forth. In a preferred embodiment, the present invention provides a friction plate and a method of manufacture thereof wherein the friction plate is fabricated from a polymeric material, which is less expensive and lighter than comparable steel friction plates.
Other features of the invention will become more apparent to those skilled in the art as the invention is further revealed in the accompanying drawings and detailed description of the invention.
A friction plate 7 is provided in
The core plate 10 has an integral reduced thickness rim portion 14. The core plate 10 may be fabricated from a sheet material or may be injection, compression, or extrusion molded. Typical core plates 10 have a thickness ranging from 0.76-1.20 mm with an outer diameter of 75 to 225 mm depending upon the application. Core plates outside of this size range may also be considered for this plastic design.
Integrally connected to the rim portion 14 is an annular ring 15 with an increased uniform axial thickness. The inner diameter of the typical core plate has a series of radially inward facing spline teeth 16 (
Connected with the rim 14 is a friction facing 18. The friction facing may be on both sides of the core plate, or only on one side. The friction facing 18 is typically a cellulosic fiber base friction material, although other friction materials such as sintered metals, ceramics, or foam may also be used. As shown, the friction facing 18 is a paper fiber based friction material. The friction facing may be a continuous ring or may be fabricated from individual arcuate segments arranged radially. The preferred number of segments is 3-5. The segmenting of the facing 18 provides significant savings in friction material cost. The individual arcuate segments 22 have interlocking tab 24 and slot 26 end portions. Another segmented facing design provides for independent or non-interlocking facing segment arcs and can provide an oil flow path between facing segments. The friction base facing 18 can be connected with the rim 14 by adhesives or by other means as described herein.
In other embodiments the facing (full ring or segments) is first placed in open halves of an injection mold. The mold halves are closed. In a preferred application, the mold is then pressurized to hold the facing in position against a surface of the mold half. In an alternate application, the facing may be held by fixtures and or by a vacuum. Under relatively high temperatures and pressure, the molten material of the core plate 10 then injected between the mold halves. As the plastic material solidifies and forms the core plate geometry, the fibers 108 of the facing 18 are partially encapsulated by the material 112 of the core plate 10, creating a boundary layer 110 and a mechanical bond between facing and core plate. To facilitate the connection of the core plate material to the facing, the facing can have a polymeric backing or be impregnated with a polymeric saturate. In either case, the polymeric backing or saturate should have a melting temperature within 22.2 degrees C. (40 degrees F.) of the material of the core plate.
In another embodiment, the friction facing 18 is welded on. The friction facing 18 can be welded by vibration welding, spin welding, or ultrasonic welding or staking or other suitable technique. The friction facing 18 can have a polymeric backing to aid in its attachment by welding. In another embodiment, the friction facing 18 can be impregnated with a polymeric material to facilitate the welding operation. Both the polymeric saturate and backing should have melting temperatures as previously mentioned. In one embodiment, the friction facing 18 may be stacked to the core plate 10.
In another embodiment the facing 18 is connected with the rim 14 by hot platen bonding. This process can be achieved in several ways. First, this process utilizes heated platens to transfer heat through facings to achieve localized surface melting of core plate, which when under pressure, allows for a bond between the facing and core plate, as the core plate plastic cools. The heat can be applied to the facings seated on both sides of the core plate or the heat can be applied to one facing only and join both facings to the core plate rim. Second, a bonding process may use plastic core plates pre-heated to achieve localized surface melting, and then transferred into a bond press where facing is positioned to core plate, and the bond is achieved under pressure. Additionally adhesive materials may be added to either facing or core plate to facilitate and/or improve bonding in all the aforementioned bonding processes.
Referring to
Referring to
In another embodiment, the oil grooves 74 can be formed in the facing 71 and optionally in the core plate in an injection molding operation. A mold cavity will be machined with a rib to impart a slightly oversize oil groove to compensate for any spring back in the material. In another embodiment, the oil grooves 74 can be formed ultrasonically in the facing 71 and underlying core plate when the facing is ultrasonically welded to the core plate 10.
In another embodiment, the oil grooves can be formed in alternative geometries, such as single direction parallel, double direction parallel (criss-crossed), non-standard linear or non-linear pattern. Oil grooves may extend fully through facing, allowing a through oil passage, or may terminate short of outer diameter to create a dead-end groove.
In another embodiment, the oil grooves may be formed through the use of the plastic injection molding process (insert loading as described previously in this document), whereas the individual, non-connected arcuate segments are positioned with a defined gap between segments into mold, with the molding process forming the core plate and achieving the required bond between friction material and core plate.
While preferred embodiments of the present invention have been disclosed, it is to be understood it has been described by way of example only, and various modifications can be made without departing from the spirit and scope of the invention as it is encompassed in the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/705,581, filed Aug. 4, 2005.
Number | Name | Date | Kind |
---|---|---|---|
3176804 | Erickson | Apr 1965 | A |
3238087 | Norwalk et al. | Mar 1966 | A |
3306401 | Dasse | Feb 1967 | A |
3927241 | Augustin | Dec 1975 | A |
3932568 | Watts et al. | Jan 1976 | A |
4674616 | Mannino, Jr. | Jun 1987 | A |
4724112 | Kabayama | Feb 1988 | A |
5332075 | Quigley et al. | Jul 1994 | A |
6345711 | Sullivan | Feb 2002 | B1 |
6370755 | Wakamori | Apr 2002 | B1 |
6419065 | Mieda | Jul 2002 | B1 |
6474452 | Velayutha | Nov 2002 | B2 |
6524681 | Seitz et al. | Feb 2003 | B1 |
6638390 | Sizelove et al. | Oct 2003 | B1 |
6655519 | Wakamori | Dec 2003 | B2 |
7051844 | Sandberg et al. | May 2006 | B2 |
7237657 | Kinoshita et al. | Jul 2007 | B2 |
20020084167 | Wakamori | Jul 2002 | A1 |
20030029687 | Marchisseau | Feb 2003 | A1 |
20030047285 | Collis | Mar 2003 | A1 |
20050015954 | Wakamori | Jan 2005 | A1 |
20050016813 | Watanabe et al. | Jan 2005 | A1 |
20050186870 | Maruo et al. | Aug 2005 | A1 |
20060293455 | Jiang et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
1 106 859 | Jun 2001 | EP |
2 096 654 | Oct 1982 | GB |
2 148 187 | May 1985 | GB |
357009330 | Jan 1982 | JP |
62141319 | Jun 1987 | JP |
S6327731 | Feb 1988 | JP |
01-218811 | Sep 1989 | JP |
402176224 | Jul 1990 | JP |
6257632 | Sep 1994 | JP |
H07010564 | Feb 1995 | JP |
09042318 | Oct 1997 | JP |
2005120163 | May 2005 | JP |
WO 9964755 | Dec 1999 | WO |
WO 02070916 | Sep 2002 | WO |
Entry |
---|
Translation of description of WO 02/070916 A1. |
Translation of claims of WO 02/070916 A1. |
Translation of JP 1-218811. |
McGraw Hill Dictionary of Scientific Terms and Technical Terms, Sixth Edition, Copyright 2003, p. 2013. |
Number | Date | Country | |
---|---|---|---|
20070029157 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
60705581 | Aug 2005 | US |