1. Field of the Invention
The present invention relates in general to metal processing techniques and, more particularly, to processes involving the fabrication or welding of advanced nickel-base superalloys.
2. Related Art
The typical nickel-base superalloy is essentially a nickel-chromium solid solution (γ phase) hardened by the addition of materials such as aluminum and/or titanium to precipitate an intermetallic compound (γ′ phase). The predominant intermetallic compound precipitated, represented by the formula Ni3 (Al, Ti), is an ordered, face centered-cubic structure with aluminum and titanium at the corners of the unit cell and nickel at the face centers. These alloys also normally contain cobalt to raise the solvus temperature of the γ′ phase, refractory metal additions for solution strengthening, and carbon, boron and zirconium to promote ductility and fabricability.
In the gas turbine engine industry in which the nickel-base superalloys are widely utilized, progressive increases in the powerplant performance requirements have led to increases in engine operating temperatures which have in turn imposed increasingly stringent demands on the turbine materials. Historically, the extent of the engine temperature increases has been limited by the physical characteristics of the hot section alloys, particularly those used in the highly stressed components such as turbine blades and vanes. Recent alloy developments, promising advances in coating technology, and the use of internal cooling techniques, however, will now allow turbine operating temperatures to be significantly increased.
Repair of gas turbine got-section components made of superalloys are often carried out by welding. These nickel-base superalloys, especially those advanced grades containing relatively high contents of the strengthening γ′ phase, are susceptible to cracking during the post-weld heat treatment that is employed to regenerate the desired microstructure-dependent properties. As a result, these superalloys are considered to be difficult to weld materials. One way to improve the weldability of this group of superalloys is to subject the materials to a pre-weld averaging treatment. This increases the material ductility which, in turn, helps to limit the buildup of residual stress produced by welding, and reduces the susceptibility to post-weld heat treatment cracking of the material. One such averaging treatment is described in U.S. Pat. No. 5,509,980 and is complex, time consuming and costly.
Accordingly, it is an object of the present invention to provide a relatively short time pre-weld preparation treatment that renders difficult or marginally weldable precipitation hardenable nickel-base superalloys readily weldable without weld-associated cracking during post-weld heat treatment.
It is a further object of the present invention to provide a relatively short time pre-weld preparation treatment that renders difficult or marginally weldable precipitation hardenable nickel-base superalloys readily weldable without the need for alloy compositional modifications and without the need for changes to otherwise conventional fusion welding procedures.
These and other objects are achieved by the present invention which employs a weld preparation process whereby a consumable or nonconsumable tool is translated along an area that is to be subsequently welded. Rotary or linearly oscillated motion between the tool and the workpiece is used to generate heat and produce deformation in the surface, resulting in recrystallization of the area being processed. The recrystallization structure that is thus produced by friction processing makes a region that is less prone to cracking problems that are typically encountered when the processed area is subsequently welded. Additionally, friction processing produces a compressive residual stress, which counteracts the tensile stresses that contribute to the heat affected zone cracking experienced in post-weld heat treatments. The area so processed is let to cool and then subsequently welded by any conventional welding technique.
A further understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
The present invention provides a process whereby a consumable or nonconsumable tool, such as a friction welder, is translated along an area that is to be subsequently welded, however, no appreciable metal is added to the surface. The rotary or linearly oscillated motion between the tool and the surface of the workpiece generates heat and produces deformation, resulting in recrystallization of the area being processed. Friction welding has been used to join materials previously. This invention is a variant on this joining process since it is used to condition the material prior to welding, not to join it. The recrystallized structure that is produced by friction processing makes a region that is less prone to cracking problems that are typically encountered after post-weld heat treatments. Additionally, friction processing produces a compressive residual stress, which counteracts the tensile stresses that contribute to heat-affected zone cracking.
The weld preparation process shown in
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular embodiments disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any and all equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3130294 | Regnauld | Apr 1964 | A |
3741824 | Duvall et al. | Jun 1973 | A |
5165589 | Nied et al. | Nov 1992 | A |
5509980 | Lim | Apr 1996 | A |
5725698 | Mahoney | Mar 1998 | A |
5975406 | Mahoney et al. | Nov 1999 | A |
6120624 | Vogt et al. | Sep 2000 | A |
6168067 | Waldron et al. | Jan 2001 | B1 |
6230957 | Arbegast et al. | May 2001 | B1 |
6308882 | Shuster et al. | Oct 2001 | B1 |
6398883 | Forrest et al. | Jun 2002 | B1 |
6422449 | Ezumi et al. | Jul 2002 | B1 |
6454531 | Crawmer | Sep 2002 | B1 |
20020079351 | Mishra | Jun 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040089646 A1 | May 2004 | US |