1. Field
The present disclosure relates to friction reducing elements and assemblies for hanging devices, particularly devices used to hang garments and personal accessories.
2. Description of Related Art
Positioning garments and personal accessories hung on a conventional wire, plastic, wood, or metal hanger is often difficult for certain persons and under certain situations. For example, persons having limited upper body strength and disabled persons may find it difficult to slide hangers positioned on a rod. Moreover, heavy garments, such as winter coats and suits, are often difficult to position on a rod when hung on conventional hangers, even for persons without disabilities.
Hooks of conventional hangers can deform over time. Depending on the material of manufacture, conventional wire hanger hooks, in particular, can bend and conform to the shape of the clothing rod. As a result, the level of friction increases during positioning of hooks along the bar. Similarly, conventional plastic hangers can develop one or more areas of deformation or bends that can also make positioning items on a rod particularly difficult. Users of conventional hangers, therefore, encounter significant frictional resistance, when attempting to position hanger hooks along a rod.
Various products have been proposed to alleviate the difficulty of positioning garments and personal accessories hung on hangers. Although suitable for their intended purpose, each has limitations. Many of these limitations are due, in part, to the product's inability to withstand stress variations placed on hanger hooks.
A class of proposed products uses a thermoplastic roller positioned on a hanger hook. One such product in this class may include a roller formed from a thin flat strip of plastic material. The flat strip may be formed to provide a generally cylindrical roller conforming to the shape of a wire hanger, and the roller may be snap-fitted over a portion of a hanger hook. Another product may include a thermoplastic molded roller having a concave outer surface and mounted to the upper portion of a hanger hook using a bracket. Rollers in such products may be intended to accommodate rods of different sizes and lessen lateral forces required to move heavy items placed on hangers.
Unfortunately, positioning difficulty still arises with use of these types of rollers because they are manufactured from thermoplastic materials. Like conventional plastic hangers, these rollers may be prone to develop one or more areas of deformation over time, making garment positioning difficult. Such areas of deformation may create lasting flat spots in the rolling surfaces, causing uneven rolling during positioning. The deformation and resulting uneven rolling may be analogous to a hard rubber automobile tire left stationary for a long period. Under these circumstances, a tire may develop an area of deformation that appears flat, causing deformation and uneven rolling that increases rolling resistance and vibration.
In view of the limitations of these and other similar products, there is a clear need for improved friction reducing elements for hanging devices. The present invention fulfills this need and provides further related advantages, as described in the following summary.
The present invention is directed to friction reducing elements for hanging devices. In one variation, a friction reducing element for a hanging device comprises a roller configured for positioning on an upper portion of a hook and a tubular elastomeric sleeve stretch-fitted over a contoured outer surface of the roller.
The roller is provided with a contoured outer surface, which facilitates movement of the roller on a positioning element, such as rods, belts, or bars of various shapes. The elastomeric sleeve comprises a thermoset elastomer that prevents premature development of areas of deformation on the roller during positioning of the hanging device. The elastomeric sleeve is configured as a unitary tubular element which is extruded from the thermoset material, cut to size, and then stretched-fitted over the roller.
The friction reducing element is positioned on a hook assembly that also includes a hook and a shell portion. A lower portion of the hook is coupled to a body for the hanging device. The body is able to support various items, including, among other things, garments, personal accessories, bags, meat products, household products, industrial products, and recreational products.
A more complete understanding of the friction reducing element and hook assemblies incorporating the friction reducing element will be afforded to those skilled in the art, as well as a realization of additional advantages and objects thereof, by consideration of the following detailed description. Reference will be made to the appended sheets of drawings which will first be described briefly.
The friction reducing element 100 comprises a roller 104 and a tubular elastomeric sleeve 106, as particularly shown in
The roller 104 may comprise a thermoplastic material. Suitable thermoplastic materials may be as used in the manufacture of precision components. These materials should also have low frictional coefficients and dimensional stability. One type of thermoplastic material for roller manufacture is polyoxymethylene (“POM”), which is also known as acetal, polyacetal, and polyformaldehyde. Other suitable roller materials may include metal, stone, ceramic, sintered materials, fiber composites, or other structural materials. Using these materials, the roller 104 may be manufactured using any suitable and cost-effective method, including injection and compression molding.
The roller 104 may also be provided with a contoured outer surface 105 that facilitates movement of the roller 104 on a positioning element, such as a rod, bar, or belt. As used herein, a contoured outer surface should be broadly construed as any outer surface that is molded or shaped to conform to a positioning element and/or facilitate positioning of the roller over the positioning element. In one embodiment, the roller 104 may be concave as depicted particularly in
Where the friction reducing element is designed for use with a rod having a circular cross-section, the outer surface of the roller 104 may be concave with a smooth contour between end portions 108, as shown particularly in
Optionally, the roller 104 may comprise ends portions 108. These end portions 108 provide additional support and positioning, as further described below. The end portions 108 may have greater diameters than the roller 104 diameter at the center portion located midway between the end portions 108.
The elastomeric sleeve 106 comprises a thermoset elastomer, having deformation resistance properties and a hardness so as to resist deformation, enable assembly of the sleeve over a roller core, and provide sufficient traction for rolling the roller over typical support bars. A suitable elastomer may be selected having a hardness in a range of about 50 to 95 Durometer Shore A, for example, in the range of 60 to 80 Durometer Shore A or about 70 Durometer Shore A, although the elastomer is not limited to these examples. Sleeves manufactured from thermoset elastomers, therefore, prevent premature development of areas of deformation on the roller during positioning of the hanging device. When left stationary for long periods, unlike thermoplastic hangers and concave rollers, the friction reducing element resists development of one or more areas of deformation. As a result, the hanging device remains balanced, allowing for even rolling and ease of positioning on a rod, bar, or other support structure. One exemplary material for use as an elastomeric sleeve is silicone rubber. Other suitable thermoset materials may include, for example, polyester, vinylester, polyurethane or phenolic resins. The sleeve is not limited to thermoset materials, and may be made of any suitable polymer, composite or other material meeting the application requirements as outlined above.
The elastomeric sleeve 106 may be configured as a unitary tubular element, as shown in
The elastomeric sleeve may be extruded from an elastomeric material, cut to size, and then stretched to fit over the roller 104. The method used to stretch the elastomeric material over the roller may be automated or performed manually. When stretch-fitted over the roller, the sleeve 106 is positioned to substantially align with roller ends 110, as shown in
The friction reducing element 100 may have a geometry adapted for its intended application. For example, when manufactured for use with a garment hanger, the friction reducing element 100 may have an overall length ranging from about 15 to 25 mm, for example, about 20 mm. The outermost diameter may range from about 5 to 9 mm, for example, about 7 mm, while the innermost diameter may range from about 1.5 to 5 mm, for example, about 3 mm. However, the friction reducing element 100 is not limited to having dimensions within the foregoing examples or ranges. The roller 104 may likewise have a geometry adapted for the friction reducing element 100. For example, for a garment hanger element, the overall length of the roller 104, excluding the end portions, may range from about 15 to 22 mm, for example, about 16 mm. For further example, if the end portions are included, the overall length of the roller may range from about 15 to 25 mm, for example, about 20 mm. The roller is not limited to these examples or ranges. As shown in
The hanging device 102 may comprise the hook assembly 112 and a body 114 for support of suspension items. The hook assembly 112 includes the friction reducing element 100, a hook 116, and a shell portion 118. The hook 116 has an upper portion 120 that couples to the friction reducing element 100 and a lower portion 122 having a curved section 121 and a substantially vertical section 124. The curved section 121 may be configured with a shape or curvature that facilitates positioning of the hook on a clothing rod, belt, or other type of positioning element (not shown). The substantially vertical section 124 couples with the body 114. In one variation, the body 114 is provided with an opening 123 that is sized to adhere to or press-fit with the substantially vertical section 124.
The hook 116 may comprise a plastic material, composite material, a metal material, or any suitable combination of these or other materials. The hook may also be provided with a thin and uniform cross-section that facilitates entry of upper portion 120 into the friction reducing element 100. The upper portion 120 of the hook 116 is substantially horizontal and configured to terminate at a specified point within the shell portion 118, as further described below.
In one configuration, the shell portion 118 comprises a front shell section 125 and a rear shell section 126. Alternatively, the shell portion may be unitary and configured for positioning over the hook. In the configuration shown in
The shell portion 118 may also include mating snap elements 134, where each element 134 has a snap recess 136 and a snap protrusion 138. Upon assembly, the shell portion 118 positions the upper portion 120 of the hook and the friction reducing element 100, as shown in
The shell portion 118 may comprise a plastic material, composite material, a metallic material, or any suitable combination of these or other structural materials. In one configuration, the shell portion 118 comprises thermoplastic material such as acrylonitrile butadiene styrene (“ABS”).
While embodiments of this invention have been shown and described, it will be apparent to those skilled in the art that many more modifications are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the following claims.