In the drilling and completion industry, the formation of boreholes for the purpose of production or injection of fluid is common The boreholes are used for exploration or extraction of natural resources such as hydrocarbons, oil, gas, water, and alternatively for CO2 sequestration. When coiled tubing is conveyed in highly deviated, long horizontal, lateral, up-dip, and even vertical boreholes, the tubing may reach a point of “lock-up” whereby the surface initiated snubbing force is insufficient to overcome the frictional forces between the coiled tubing and the casing or formation wall.
There have been some attempts at overcoming such frictional forces by incorporating a valve to cyclically interrupt flow within the tubing to create pressure pulses. While such pressure pulses are capable of reducing frictional forces between the coiled tubing and the borehole environment, the valve typically temporarily blocks the flowbore of the tubing thereby disrupting flow that could by used by other downhole tools or bottom hole assemblies.
Thus, the art would be receptive to improved alternative devices and methods for breaking or minimizing frictional forces to allow further transmission of a coiled tubing into a borehole.
A friction reduction assembly for a downhole tubular, the friction reduction assembly includes an electrically activated friction reduction sub including: a flowbore fluidically connected to a flowbore of the tubular and remaining open for fluid flow therethrough during both activated and non-activated states of the friction reduction sub; and a friction reducer responsive to an indication of lockup of the tubular; wherein friction between the tubular and surrounding casing or borehole is reduced in an electrically activated state of the friction reduction sub.
A method of reducing friction in a downhole tubular, the method including inserting a tubular having a flowbore into a borehole; sensing a lockup of the tubular within the borehole; powering an electrically activated friction reduction sub in response to a sensed lockup of the tubular, the friction reduction sub having a flowbore fluidically connected to the flowbore of the tubular and remaining open for fluid flow therethrough during both activated and non-activated states of the friction reduction sub; and reducing friction between the tubular and surrounding borehole in the activated state of the friction reduction sub.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
For coiled tubing applications, a tubing injector (not shown), can be used to move the tubing 14 from a source thereof, such as a reel, to the borehole 10. A sensor 28 may be provided at the surface location 22, such as at the injector or reel, to detect if the tubing 14 is experiencing a lockup from continued entry into the borehole 10, and sends a signal, such as via line 30. The sensor 28 could be one or more of a speed sensor to detect a change in speed of the tubing 14, a motion sensor to detect a cessation of motion of the tubing 14, a rotation sensor to detect a rotation change of a reel, etc. Alternatively, manual operator input, in response to operator detection of a lockup of the tubing 14, sends the detection signal via the line 30. In yet another alternative exemplary embodiment, a sensor module 32 is directly incorporated into the tubing 14 or tool 18 to detect changes in the motion of the tubing 14 through the borehole 10. The sensor module 32 could be incorporated into a logging bottom hole assembly 34, provided separately along interconnections of the tubing 14 or other locations along the tubing 14, or provided within the tool 18. The sensor module 32 may contain sensors 36, circuitry, and processing software and algorithms relating to the insertion parameters. Such parameters may include shocks, pressure, speed and acceleration measurements, and other measurements related to the condition of the tubing 14. Signals from sensors 36 in the sensor module 32 or sensors 36 provided elsewhere along the tubing 14 are either processed by the sensor module 32, sent to a surface location 22 such as surface control unit 38 for operator evaluation, or directly to a friction reduction assembly 40 for immediate or subsequent action. The surface control unit 38 or processor receives signals from the sensors 36 and processes such signals according to programmed instructions provided to the surface control unit 38. The surface control unit 38 may further display information on a display/monitor utilized by an operator. The surface control unit 38 may include a computer or a microprocessor-based processing system, memory for storing programs or models and data, a recorder for recording data, and other peripherals. The control unit 38 may be adapted to notify the operator when operating conditions indicate a lock-up. The surface control unit 38 may also be used for other operations of the tubing 14 and tool 18 not described herein. A communication sub (not shown) may obtain the signals and measurements and transfers the signals, using two-way telemetry, for example, to be processed at the surface location 22. Alternatively, the signals can be processed using a downhole processor in the tool 18 or sensor module 32. In the event a signal is sent indicating that the tubing 14 has encountered frictional forces with the borehole 10, the friction reduction assembly 40 is electrically activated, via input from the surface sensor 28, operator input through the controller 38, or from a downhole sensor 36, to assist the continued entry of the tubing 14 through the borehole 10 to successfully deliver the tool 18 to its destination. By electrically initiating the activation of the friction reduction assembly 40 only when friction reduction is required, the selective operation of friction reduction does not impede operation of the tool(s) 18, tubing 14, or any downhole procedure. Furthermore, as will be further described below, even when the friction reduction assembly 40 is activated, flow through a flowbore 42 of the tubing 14 is not blocked so as to allow for flow therethrough for use by the tool 18 or downhole operations requiring such flow.
Turning now to
An exemplary embodiment of the friction reduction assembly 40 includes a logging bottom hole assembly (“BHA”) 34, although the logging BHA may be a separate component from the friction reduction assembly 40. Also included in the friction reduction assembly 40 is a power supply 46, which may be incorporated into a power supply sub 48, and an electrically activated flow interruptor 50, also referred to herein as a friction reduction sub.
The logging BHA 34 is attachable to the tubing 14. The logging BHA 34 includes an uphole end 54 connected to the tubing 14, and a downhole end 56. The logging BHA 34 also includes flowthrough, such that a flowbore 58 of the logging BHA 34 is in fluid communication with the flowbore 42 of the tubing 14. The logging BHA 34 may create any type of geophysical log by making at least one type of measurement of rock or fluid property in the borehole 10 or within the flowbore 58 of the logging BHA 34 itself. The measurements are taken using at least one type of sensor, including, but not limited to, sensors to measure pressure, temperature, spontaneous potential, and radiation, as well as a variety of sensors such as acoustic (sonic), electric, inductive, magnetic resonance, etc. One of the sensors in the logging BHA 34 may be the sensor 36 that detects a frictional encounter with the borehole 10. The data from the measurements secured by the logging BHA 34 may be recorded at the surface control unit 38, or alternatively the logging BHA 34 may include a memory storage unit for subsequent creation of a well log. Since the information from the logging BHA 34 can be used by operators to gain an understanding of the borehole 10 for any desired downhole operation, the logging BHA 34 need not be directly part of the friction reduction assembly 40 even if information obtained from the logging BHA 34 is utilized by the friction reduction assembly 40. Alternatively, the friction reduction assembly 40 may be electrically operated using signals initiated by an operator or from other sensors 36, 28 as previously described.
Connected downhole of tubing 14, and the logging BHA 34 if utilized, is a power supply sub 48. The power supply sub 48 includes an uphole end 60 and a downhole end 62 and includes flowthrough via a flowbore 66. The uphole end 60 of the power supply sub 48 is connected downhole of the logging BHA 34 or tubing 14. In one exemplary embodiment, a conductor 64 passes through the tubing 14, logging BHA 34, and into the power supply sub 48. The conductor 64 is formed of one or more insulated wires or bundles of wires adapted to convey power and/or data, and may be included with or part of the signal conducting line 30 that delivers signals from the surface location 22. The conductor 64 can include metal wires, or alternatively other carriers such as fiber optic cables may be used. The conductor 64 can deliver the signal provided by the sensors 28 or operator input previously described, as well as carry the signals from the downhole sensors 36. Additionally, by use of either direct or alternating current transmittal through the conductor 64, the power supply sub 48 is capable of providing sufficient power to operate the friction reduction sub 50 connected downhole of the power supply sub 48. The conductor 64 is either provided within a protective channel (not shown) incorporated within the tubing 14 or passed through the flowbores 42, 58 of the tubing 14 and logging BHA 34, such as via a wireline. U.S. Pat. No. 7,708,086 to Witte, herein incorporated by reference in its entirety, describes the conveyance of power through jointed drill pipe or coiled tubing to a BHA using power and/or data transmission line. Advantages of using conductor 64 to conduct current from the surface 22 include the ability to conduct high amounts of electrical energy from the surface 22 and the supply from the surface 22 is relatively unlimited.
The power supply sub 48 may alternatively or additionally include a power storage unit such as one or more batteries 68. Batteries 68 can be used as a local source of power for downhole electrical devices, such as the electrically activated flow interruptor 50 or a tool 18, but the batteries 68 must be arranged to fit within space constraints that exist within the borehole 10 and tubing 14. Electrically recharging the battery 68 can occur through the conductor 64, and replacing the battery 68, if required, may be accomplished via a wireline operation or upon retrieval of the battery 68 from the borehole 10.
In other exemplary embodiments, the power supply sub 48 may additionally or alternatively include a downhole electrical generating mechanism 70 (
Energy can also be harvested within the tubing 14 when turbulence or pressure waves are induced by the flow interruptor 50, as will be further described below. One exemplary embodiment of generating power from the pressure waves 82 created by the flow interruptor 50 is shown in
When determined by a surface operator or via the logging BHA 34 or sensor 36 or 28 that the tubing 14 has become “locked up” and surface initiated snubbing force is insufficient to overcome the frictional forces between the tubing 14 and the formation wall 16 or casing 12, then the power supply sub 48 will supply power to activate the electrically operated flow interruptor 50. The electrically operated flow interruptor 50 shares substantially the same flowpath, and likewise may share substantially the same longitudinal axis when interconnected with the power supply sub 48, logging BHA 34, and tubing 14. While the friction reduction sub 50, power supply sub 48, and logging BHA 34 have been described and illustrated as separate elements, another exemplary embodiment would include the integration of any combination of such subs, although separating the components into different subs generally eases replacement of defective parts. Also, while the different subs are described as interconnected, it should be understood that the elements may be separated from each other by any additional lengths of tubing 14 or connectors.
When powered by the power supply sub 48, the electrically operated flow interruptor 50 will create one of a sonic, magnetic, mechanical, and/or electrical event that temporarily and/or cyclically interrupts a fluid flow path in at least a portion of the flowbore 104 and 42 to create pressure waves 82/pulses at frequencies necessary to induce system friction reduction. A friction reducer of the flow interruptor 50 is accessible to the flow bore 104 of the friction reduction assembly 40, but does not block the flow bore 104 of the friction reduction assembly 40 even when in use, nor does it interrupt the normal flow through the flow bore 104 of the friction reduction assembly 40 and tubing 14. Thus, any downhole tools, such as tool 18, that depend on the flow through the flow bore 42 still receive the flow.
As depicted in
Another exemplary embodiment of a flow interruptor 116 is shown in
In yet another exemplary embodiment of a flow interruptor 130 shown in
In the embodiments described above, the flow interruptor 50 does not block flow through the flowbore 104. Alternatively, the flow interruptor 50 includes a restrictor that alternately restricts and permits flow through the flowbore 104, but does not completely prevent flow through the flowbore 104 even during restriction. An exemplary embodiment of a flow restrictor 150 for a flow interruptor 152 is shown in
As shown in
As shown in
The exemplary embodiments of friction reducers for a flow interruptor have primarily involved the creation of pulses within the flowbore 104 for inducing friction reduction. As shown in
As shown in
Any of the above described embodiments of an electrically operated flow interruptor and friction reduction sub may be used in plurality and sections of tubing 14 may be interposed therebetween. More than one friction reduction sub 50 may be connected to and operated by a single power supply sub 48. While fluid flow is illustrated in one particular direction, it should be understood that the fluid flow within the flowbores 42, 58, 66, 104 of the above described exemplary embodiments may be in either uphole or downhole direction depending upon the particular application of the string. Likewise, direction of the pressure waves 82 may be in a different direction depending on the direction of the fluid flow.
A method of reducing friction in a downhole tubular includes inserting a tubular such as the tubing 14 into the borehole 10, sensing a lockup of the tubular within the borehole 10, sending a signal to a power source or supply 46 in response to the sensed lockup, powering an electrically activated friction reduction sub 50 by the power source, the friction reduction sub 50 having a flow bore 104 fluidically connected to a flowbore 42 of the tubular, the sub 50 further having a friction reducer, such as the pulsers shown in
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Number | Name | Date | Kind |
---|---|---|---|
4518888 | Zabcik | May 1985 | A |
5009272 | Walter | Apr 1991 | A |
5839508 | Tubel et al. | Nov 1998 | A |
6237701 | Kolle et al. | May 2001 | B1 |
6279670 | Eddison et al. | Aug 2001 | B1 |
6555926 | Gondron | Apr 2003 | B2 |
7077205 | Eddison | Jul 2006 | B2 |
7139219 | Kolle et al. | Nov 2006 | B2 |
7219726 | Zheng et al. | May 2007 | B2 |
7434627 | Turley et al. | Oct 2008 | B2 |
7487828 | Fincher et al. | Feb 2009 | B2 |
7708086 | Witte | May 2010 | B2 |
8134476 | Chemali et al. | Mar 2012 | B2 |
8162078 | Anderson | Apr 2012 | B2 |
20080251254 | Lynde | Oct 2008 | A1 |
20090166045 | Wetzel | Jul 2009 | A1 |
20100212901 | Buytaert | Aug 2010 | A1 |
20100224412 | Allahar | Sep 2010 | A1 |
20110011594 | Young | Jan 2011 | A1 |
20120193145 | Anderson | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
0185111 | Jun 1986 | EP |
2343465 | Oct 2000 | GB |
9746787 | Nov 1997 | WO |
2008007066 | Jan 2008 | WO |
Entry |
---|
National Oilwell Varco, “Agitator Tool” Downhole, www.nov.com/downhole, D392001564-MKT-001, 2009, pp. 1-2. |
Tempress, “Extended-Reach Tool” HydroPull, www.tempresstech.com; Tempress Technologies , Inc. 2012, pp. 1-5. |
Thru Tubing Solutions, “XRV”, www.thrutubing.com; Oklahoma City, OK, Thur Tubing Solutions 2010-2012, pp. 1-3. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration; PCT/US2013/054337; International Search Report 6 pages, Written Opinion 8 pages; Nov. 13, 2013. |
International Search Report issued Dec. 17, 2015 re: Application No. PA 2015 00149; 8 pages. |
Number | Date | Country | |
---|---|---|---|
20140069639 A1 | Mar 2014 | US |