The present application claims priority from Japanese application serial no. 2007-48366, filed on Feb. 28, 2007, the contents of which are hereby incorporated by references into this application.
The present invention relates to friction stir welding methods of inserting a rotary tool as welding tool into a joining section of metal sheets to be joined (welded) and joining them together utilizing frictional heat produced by rotation of the rotary tool, and in particular to a method for joining laminated dissimilar metal sheets.
The friction stir welding method includes the following steps of: inserting a rotary tool (welding tool), which is harder than metal sheets to be joined, into a join section of the metal sheets, and welding the metal sheets to each other by frictional heat produced between the rotary tool and the join section of the metal sheets, wherein the friction heat is produced by rotating the rotary tool. That is, it utilizes a plastic flow caused by frictional heat between the rotary tool and the metal sheets to be joined and is not designed to melt metal materials to join them unlike arc welding. This joining method is different from conventional methods, such as rotational friction welding of rotating both materials to be joined and joining them together by frictional heat between them. With the friction stir welding method using a rotary tool, materials to be joined can be continuously joined together in the direction of join line, that is, in the direction of length.
Japanese Patent Laid-Open No. 2001-314981 discloses a technique of joining two members of a lap joint to each other by utilizing the friction stir welding. This prior art discloses that: a welding tool has a flat tip surface or a recess in its tip surface; the welding tool makes frictional stir to one member by press fitting into the member, and at the same time, also makes frictional stir to the other member, thereby joining both the members together.
For example, reformers for town gas and reactors for causing dehydrogenation reaction from organic hydride use a hydrogen separation membrane to lower a reaction temperature and supply high-purity hydrogen. The hydrogen separation membrane is metal foil based on palladium (hereafter, described as Pd), niobium, zirconium, or the like. For catalyst, a high thermal conductive base material, such as aluminum (hereafter, described as Al), is used because the hydrogen generation reaction is endothermic.
When metal members different in melting point are joined into a lap joint to fabricate a reactor, it used to be difficult to frictionally stir these members to be joined since these metal members are different in flow resistance. As an example, it will be assumed that an Al sheet, a Pd sheet, and an Al sheet are laminated in this order and joined together at a time. In this case, the melting point of Al is 660° C., and the melting point of Pd is far higher than that of Al. For this reason, a problem arises. When the upper sheet is of Al, since the middle sheet of Pd has a high melting point and a high flow resistance compared with the Al sheet, therefore, plastic flow of the Pd middle sheet does not occur. Consequently, it is impossible to join an Al lower sheet disposed under the Pd sheet together with the other two sheets by friction stir welding.
Reactors are used to supply a liquid or gaseous substance to cause dehydrogenation reaction. At this time, the interior of a reactor is exposed to hydrogen, and there is a possibility that degradation in the performance of material, such as hydrogen embrittlement, as results. An intermetallic compound produced in a joining section between dissimilar metal members causes degradation in fatigue strength or the like. With respect to hydrogen embrittlement as well, it is expected that the intermetallic compound will be more susceptible than the base metal.
An object of the invention is to provide a friction stir welding method wherein three or more members of metal different in melting point can be simultaneously laminated and jointed together.
The present invention is relates to a method for alternately laminating each first metal sheet and each second metal sheet in three or more layers, wherein a melting point of the second metal sheet is higher than that of the first metal sheet, and welding them together by friction stir welding.
Furthermore, under a state where those three or more metal sheets are so laminated that an edge of said first metal sheet protrude outward of an edge of the second metal sheet, the friction stir welding is executed by pressing a welding tool against only the edge of the first metal sheet.
Further, a protruding section of the first metal sheet softens and plastically flows around a recessed edge of said second metal sheet by the friction stir welding and a resulting plastic flow section of the first metal sheet covers the edge of said second metal sheet.
In this friction stir welding method, a welding tool is pressed against only either member of them to cause friction stir. The plastic flow is caused at the joined interface between one member and the other member by this pressing force and frictional heat. Thus, a reaction layer can be formed in the joined interface between both the members, and this makes it possible to join dissimilar metal sheets together.
According to the invention, it is possible to provide a friction stir welding method with which three or more sheets of metal different in melting point can be alternately laminated and joined together.
Description will be given to a method for laminating members and joining them together.
To implement the joining of the invention, it is required to use an apparatus at least comprised of a rotator shaft for rotating a welding tool as a joining tool; a thrust shaft for pressing the welding tool against members to be joined; and a movement shaft for moving the welding tool in the direction of a join line. The apparatus may be so structured that members to be joined are moved as long as the joining tool is rotated. The joining method of the invention can be implemented with such a machine tool as a milling machine or numeric controlled milling machine as long as the above requirements are met.
To fix members (work) to be joined, retaining jigs respectively corresponding to the shapes of the members are used. Especially, when thin sheet laminated structures are joined into a lap joint, the members to be joined are prone to be deformed when pressed by the welding tool. Therefore, it is desirable to continuously retain them around the join line in the direction of the join line.
The number of welding tool-rotations and the welding speed where the friction stir welding can be carried out, differ depending on the materials or sheet thicknesses of members to be joined. Though it cannot be categorically described, therefore, for example, a laminate comprises a Pd sheet with 0.1 mm thickness and two pure Al sheets with 0.2 mm thickness, and they can be simultaneously so laminated that the Pd sheet is sandwiched between the Al sheets and joined together by taking the following procedure. That is, a welding tool is pressed against only the Al sheets at the number of rotations of 18000 rpm and a joining speed of 1000 mm/min.
The photo of
Description will be given to the functions of the hydrogen reactor. Organic hydride supplied to the hydrogen reactor passes through a catalyst face of the catalyst sheet and it thereby causes dehydrogenation reaction. Then, it is separated into hydrogen gas and waste liquid (dehydrogenated organic hydride). The waste liquid goes through a channel in the catalyst sheet and is discharged to outside the hydrogen reactor. The hydrogen gas generated from the organic hydride permeates the hydrogen separation membrane and moves to the hydrogen channel sheet side. As a result, the hydrogen gas is separated from the waste liquid and it goes through the hydrogen channel and is discharged to outside the hydrogen reactor and recovered there. Since the dehydrogenation reaction is an endothermic reaction, the hydrogen reactor is heated to 200 to 300° C. during being used.
Description will be given to a method for joining members in the laminate of Al sheet 1/Pd sheet 2/Al sheet 1 of the hydrogen reactor. The melting point of the Al sheets 1 is lower than the melting point of the Pd sheet 2. The sheets are so formed that sheet widths 5a, 5b of the Al sheets 1 are larger than sheet widths 6a, 6b of the Pd sheet 2. In this embodiment, the sheet widths 5a, 5b of the Al sheets 1 are respectively made larger than the sheet widths 6a, 6b of the Pd sheet 2 by 2.0 mm. As illustrated in
Any organic hydride can be used in the hydrogen reactor described in relation to this embodiment as long as it is an organic compound that repeatedly chemically stores and releases hydrogen. Of such organic compounds, aromatic compounds are preferable. Any or a mixture of benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, anthracene, biphenyl, phenathlene, and their alkyl substitution products can be utilized. For the highly thermally-conductive substrate and hydrogen channel sheet, a metal based on copper, nickel, aluminum, silicon, titanium, or the like or its alloy or cladding material can be used. For the catalyst carrier, at least one kind selected from a group composed of alumina, zincoxide, silica, zirconium oxide, diatomite, niobium oxide, vanadium oxide, activated carbon, zeolite, antimony oxide, titanium oxide, tungstic oxide, and ferric oxide. For the hydrogen separation membrane, such a metal as Pd, Nb, Zr, V, or Ta or its alloy can be used. For Nb or V metal, such an alloy of Mo, Co, Ni, or the like can be used.
In the description of this embodiment, joining of materials of Al sheet 1/Pd sheet 2/Al sheet 1 into a laminated member is taken as an example. The joining method of the invention is also applicable to any other dissimilar metals. In this case, it is important to laminate dissimilar metals with a low-melting point metal protruded so that a welding tool can be pressed only against the low-melting point metal for friction stir.
When the method of joining in through holes in this embodiment is applied to the hydrogen reactor described in relation to the first embodiment, the following takes place: the joining sections in the through holes make heat collection paths and this facilitates supply of heat to the interior of the laminated member. As a result, it is possible to supply heat to the entire surfaces of the catalyst sheets and thus enhance the efficiency of dehydrogenation reaction. At this time, it is desirable to join the materials both at the outer circumferential surface of the laminated member and in the through holes.
Number | Date | Country | Kind |
---|---|---|---|
2007-048366 | Feb 2007 | JP | national |