This invention disclosure generally relates to railcar draft gears and, more specifically, to a railcar draft gear specifically designed to consistently and repeatedly withstand up to about 130 KJ of energy imparted to said draft gear at less than three meganewtons while having a wedge member move in an inward axial direction ranging less than about 120 mm relative to an open end of the draft gear.
Coupler systems for modern railroad cars typically include a draft gear to cushion and absorb forces placed on the system during car operation. In conventional draft gears, draft forces impinging upon a wedge member extending from an open end of a draft gear housing are dissipated in the draft gear housing through a friction clutch assembly. The open end of the draft gear housing has a series of inwardly tapered friction surfaces such that as the wedge member is forced inwardly of the draft gear housing, in response to draft forces acting thereon, friction members forming part of the friction clutch assembly are also moved axially inward of the housing and radially outward by the wedge member. As these friction member move radially outward, friction forces increase between the friction member and the housing. Moreover, inner ends of the friction members abut against a follower or spring seat. The spring seat is resiliently biased against the friction members by a spring assembly which resists axial inward movement of the friction members and wedge member.
While conventional draft gears have high shock absorbing capacities and capabilities, they tend to transmit high magnitude of force to the railcar structure during a work cycle. Of course, transmitting a high magnitude of force to the railcar structure can result in damages to the goods being carried by the railcar.
Thus, there is continuing need and desire for a draft gear having the capability and capacity for absorbing extremely large forces during operation of the railcar while offering improved cushioning between the draft gear and the railcar structure.
In view of the above, and in accordance with one aspect, there is provided a friction/elastomeric draft gear including a hollow metal housing open at a first end and closed toward the second end thereof. The housing defines a longitudinal axis for the draft gear and has a series of tapered longitudinally extended inner surfaces opening to and extending from the open end of the housing. The draft gear housing has two pairs of joined and generally parallel walls extending from the closed end toward the open end such that a hollow chamber having a generally rectangular cross-sectional configuration is defined by and for a major portion of the length housing and opens to the open end thereof. A series of friction members are equally spaced about the longitudinal axis at the first end of the housing. Each friction member has axially spaced first and second ends and an outer surface extending therebetween. The outer surface on each friction member is operably associated with one of the tapered longitudinally extended inner surfaces on the housing so as to define a first angled friction sliding surface therebetween. A wedge member is arranged from axial movement relative to the open end of the housing. The wedge member defines a series of outer tapered surfaces equally spaced about the longitudinal axis of the housing and equal in number to the number of friction members. Each outer tapered surface on the wedge member is operably associated with an inner surface on each friction member so as to define a second angled friction sliding surface therebetween and such that the wedge member causes the friction members to move radially outward upon movement of the wedge member inwardly of the housing. A spring seat is arranged within the hollow chamber of the draft gear housing and extends generally normal to the longitudinal axis of the draft gear. The spring seat is arranged in operable engagement with the second end of each friction member.
A spring assembly is disposed in the hollow chamber of the draft gear between the closed end of the housing and the spring seat for storing, dissipating and returning energy imparted to the draft gear. The spring assembly comprises a axial stack of individual elastomeric springs. Each individual elastomeric spring includes an elastomeric pad having a generally rectangular shape approximating the cross-sectional configuration of the housing chamber whereby optimizing the capability of the spring assembly to store, dissipate and return energy imparted to the draft gear during its operation. To enhance the capability and capacity for absorbing extremely large forces during operation of the railcar while offering improved cushioning between the draft gear and the railcar structure, the spring assembly in combination with the angle of the first and second friction sliding surfaces relative to the longitudinal axis of the draft gear consistently and repeatedly withstands about 100 KJ of energy imparted to the draft gear at two meganewtons over a range of travel of the wedge member in an inward axial direction relative to the housing of about 90 mm.
In one form, at least one wall of the draft gear housing defines an opening through which the individual elastomeric springs can be moved into the hollow chamber defined by the draft gear housing. Preferably, the first friction sliding surface between the outer surface of each friction member and one of the tapered longitudinally extended inner surfaces on the draft gear housing is disposed at an angle ranging between about 1.7° and about 2° relative to the longitudinal axis of the draft gear. In another form, the second friction sliding surface between each outer tapered surface on the wedge member and the inner surface on each friction member is disposed at an angle ranging between about 32° and about 45° relative to the longitudinal axis of the draft gear. In a preferred embodiment, each friction member further includes structure arranged in operable combination with the spring seat for maintaining each friction member in operative relationship with the wedge during operation of the draft gear.
In a preferred form, the elastomeric pad of each individual elastomeric spring is formed from a polyester material having a Shore D hardness ranging between about 40 and 60 and an elastic strain to plastic strain ratio greater than 1.5 to 1. The elastomeric pad of each individual elastomeric spring furthermore preferably includes a metal plate on opposed planar sides of each elastomeric pad. Preferably, each metal plate includes structure interengaging with similar structure of an adjacent elastomeric spring for maintaining the individual elastomeric springs in generally aligned and stacked relation relative to each other.
According to another aspect, there is provided a friction/elastomeric draft gear for a railcar including an axially elongated metallic housing having a closed end, an open end. The housing defines a longitudinal axis for the draft gear. The housing further includes two pairs of joined sidewalls extending generally from the closed end for major lengthwise distance between the ends so as to define a hollow chamber having a generally rectangular cross-sectional configuration. A friction clutch assembly is provided for absorbing axial impacts directed against the draft gear. The friction clutch assembly includes a plurality of friction members, with each friction member, in combination with the open end of the draft gear housing, defining a first friction surface arranged at an angle θ relative to the longitudinal axis of the draft gear. The friction clutch assembly further includes an actuator having a plurality of angled surfaces and axially extending beyond the open end of the housing for receiving energy directed axially to the draft gear. Each angled surface on the actuator is arranged in sliding friction engagement with an inner surface on each friction member and defines a second friction surface disposed at an angle β relative to the longitudinal axis of the draft gear. A spring seat is arranged in operable combination with the plurality of friction members.
An elastomeric spring assembly is centered and slidably fitted within the rectangular hollow chamber of the housing. The spring assembly includes a series of axially stacked individual units between the closed end of the housing and the spring seat for absorbing, dissipating and returning energy imparted to the actuator during operation of the draft gear. Each unit includes a spaced apart pair of metal plates disposed generally normal to the longitudinal axis. Each metal plate has, in plan, a generally rectangular configuration. An elastomeric spring, having a generally rectangular configuration, in plan, is secured between the metal plates. The spring assembly in combination with the angles of the first and second sliding surfaces relative to the longitudinal axis of the draft gear consistently and repeatedly withstanding about 130 KJ of energy imparted to the draft gear at three meganewtons over a range of travel of the wedge member in an inward axial direction relative to the housing not exceeding about 120 mm.
At least one sidewall of the draft gear housing preferably defines an opening through which the individual units of the spring assembly can be moved into the chamber defined by the housing. In a preferred form, the angle θ of the first friction surface defined by each friction member and the draft gear housing ranges between about 1.7° and about 2° relative to the longitudinal axis of the draft gear. Moreover, the angle β of the second friction surface defined between each outer tapered surface on the wedge member and the inner surface on each friction member of the friction clutch assembly preferably ranges between about 32° and about 45° relative to the longitudinal axis of the draft gear. In one form, each friction member further includes structure arranged in operable combination with the spring seat for maintaining the friction members in operational relation relative to the wedge during operation of the draft gear.
Preferably, the elastomeric spring of each individual unit of the spring assembly is formed from a polyester material having a Shore D hardness ranging between about 40 and 60 and an elastic strain to plastic strain ratio greater than 1.5 to 1. Moreover, each metal plate of each individual unit of the elastomeric spring assembly preferably includes structure interengaging with similar structure of an adjacent unit of the elastomeric spring assembly for maintaining the individual units in generally aligned and stacked relation relative to each other.
According to yet another aspect, there is provided a friction/elastomeric draft gear for a railcar including a metallic housing having a closed end and an open end aligned relative to each other along a longitudinal axis. The housing has a hollow chamber defined by two pairs of generally parallel and joined walls so as to provide the chamber with a generally rectangular cross-section extending from the closed end toward the open end. A series of tapered friction surfaces extend from the open end toward the closed end of the housing. A series of equally spaced friction members are slidably arranged in the open end of the housing. An outer angled surface on each friction member is operably associated with a tapered friction surface on the housing so as to define a first friction sliding surface therebetween. A wedge member, having a free end extending beyond the open end of the housing, also has a plurality of outer angled friction surfaces engagable with inner angled surfaces on the friction members and is adapted to actuate same upon movement thereof inwardly of the housing. A second friction sliding surface is defined between the outer friction surfaces on the wedge member and the inner angled surfaces on the friction members.
An elastomeric spring assembly is centered and slidably fitted within the rectangular hollow chamber of the housing and is comprised of a series of axially stacked individual units disposed between the closed end of the housing for resisting inward movement of the wedge member during operation of the draft gear. One end of the spring assembly is disposed against the closed end of the housing. A second end of the spring assembly urges a spring seat, disposed generally normal to the longitudinal axis of the draft gear, against one end of the friction members. Each unit of the spring assembly includes a spaced apart pair of metal plates disposed generally normal to the longitudinal axis, with each metal plate having, in plan, a generally rectangular configuration, and a generally elastomeric spring, having, in plan, a generally rectangular configuration. The spring assembly in combination with the angle of the first and second friction surfaces relative to the longitudinal axis of the draft gear consistently and repeatedly withstand between about 100 KJ and about 130 KJ of energy imparted to the draft gear at less than three meganewtons and over a range of travel of the wedge member in an inward axial direction relative to the housing ranging between about 90 mm and about 120 mm.
To facilitate assembly of the draft gear, at least one wall of the draft gear housing preferably defines an opening through which the units comprising the spring assembly can be moved into the hollow chamber defined by the housing. Preferably, the first friction sliding surface, between each friction member and the draft gear housing, is disposed at an angle ranging between about 1.7° and about 2° relative to the draft gear longitudinal axis. In a preferred form, the second friction sliding surface, between the outer friction surfaces on the wedge member and the inner angled surfaces on the friction members, is disposed at an angle ranging between about 32° and about 45° relative to the draft gear longitudinal axis. Each friction member furthermore preferably includes structure arranged in operable combination with the spring seat for maintaining each friction member in proper relation relative to the wedge during operation of the draft gear.
The elastomeric spring of each individual unit of the spring assembly is preferably formed from a polyester material having a Shore D hardness ranging between about 40 and 60 and an elastic strain to plastic strain ratio greater than 1.5 to 1. Moreover, the metal plate of each individual unit of the spring assembly preferably includes structure interengaging with similar structure of an adjacent individual unit for maintaining the individual elastomeric springs in generally aligned and stacked relation relative to each other.
While this invention disclosure is susceptible of embodiment in multiple forms, there is shown in the drawings and will hereinafter be described a preferred embodiment, with the understanding the present disclosure sets forth an exemplification of the disclosure which is not intended to limit the disclosure to the specific embodiment illustrated and described.
Referring now to the drawings, wherein like reference numerals indicate like parts throughout the several views, there is shown in
Moreover, and as shown in
In the embodiment shown in
Turning to
In the illustrated embodiment, the friction clutch assembly 40 further includes a wedge member or actuator 50 arranged for axial movement relative to the open end 20 of housing 16. As shown in
The wedge member or actuator 50 defines a plurality of outer tapered or angled friction surfaces 57 arranged in operable combination with the friction members 42 of the clutch assembly 40. Although only one friction surface 57 is shown in
Wedge member 50 is formed from any suitable metallic material. In a preferred form, wedge member 50 is formed from an austempered ductile iron material. Moreover, and as shown in
As shown in
As shown in
In the form shown by way of example in
An axially elongated elastomeric spring assembly 70 is generally centered and slidable within chamber 30 of the draft gear housing 16 and forms a resilient column for storing dissipating and returning energy imparted or applied to the free end 52 of wedge member 50 during axial compression of the draft gear 10. One end of spring assembly 70 is arranged in contacting relation with the end wall 20 of housing 16. A second end of spring assembly 70 is pressed or urged against surface 64 of the spring seat 60 to oppose inward movements of the friction members 42 and wedge member 50. As known, spring assembly 70 is precompressed during assembly of the draft gear 10 and serves to maintain the components of the friction clutch assembly 40, including friction members 42 and wedge member 50,k in operable combination relative to each other and within the draft gear housing 16 both during operation of the draft gear 10 as well as during periods of non-operation of the draft gear 10. In the illustrated embodiment, spring assembly 70 develops about a 10,000 pound preload force for the draft gear 10 and is capable of absorbing, dissipating and returning impacts or energy directed axially thereto in the range of between 450,000 lbs. and about 700,000 lbs.
In the form shown in
As illustrated in
Preferably, the elastomeric pad 78 is formed from a polyester material having a Shore D hardness ranging between about 40 and 60 and an elastic strain to plastic strain ratio of about 1.5 to 1. Suffice it to say, and as described in greater detail in U.S. Pat. No. 5,381,844 to R. A. Carlstedt, the working process and methodology for creating the each spring unit 72 involves creating a preform block which is arranged between the plates 74, 76. The preform block of elastomer along with the plates 74, 76 are precompressed to greater than 30% of the preformed height of the preform thereby transmuting the preform into an elastomeric spring.
The plates 74, 76 are preferably of similar design to advantageously reduce the manufacturing cost for each spring unit 72. In the preferred embodiment, each plate 74, 76 has one or more openings or throughbores 80 arranged in generally centered relation thereon. During the working process described above for each unit 72, elastomeric material of the preform tends to flow into and engage with the marginal edge of each bore 80 whereby enhancing securement of the pad 78 to each plate 74, 76.
Preferably, the plates 74, 76 of each elastomeric spring unit 72 further includes structure 84 interengaging with similar structure on an adjacent elastomeric spring unit 72 for maintaining the individual elastomeric springs in generally aligned and stacked relationship relative to each other. In the form shown in
As shown in
In one form, and as shown in
From the foregoing, it will be observed that numerous modifications and variations can be made and effected without departing or detracting from the true spirit and novel concept of this invention disclosure. Moreover, it will be appreciated, the present disclosure is intended to set forth an exemplification which is riot intended to limit the disclosure to the specific embodiment illustrated. Rather, this disclosure is intended to cover by the appended claims all such modifications and variations as fall within the spirit and scope of the claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/02537 | 9/17/2010 | WO | 00 | 6/8/2012 |