The present invention relates to ice dispensers, and more particularly to an improved method of connecting a drive mechanism to a paddlewheel of an ice dispenser so that the drive shaft can be disengaged from the paddlewheel in order to be able to remove the drive mechanism from the ice dispenser without accessing the ice storage bin. The invention also relates to an improved paddlewheel, and ice and beverage dispensers that use the improved drive mechanism.
In the post-mix beverage dispensing industry, most beverages are served with a form of ice. Ice can be scooped out of a bin and placed into a cup before the beverage is added. However, ice dispensers are frequently used to add ice to the cup when a large number of beverage servings are routinely needed. Most ice dispensers on the market use an interior ice bin that may be manually or automatically filled. Ice in the ice bin is then picked up by a rotating paddlewheel having ice engagement members, passed over an opening, and dispensed through a chute into a cup. The bin will generally include an agitator for breaking up the ice. An electric motor is used to drive a gear assembly and drive shaft that extends into the bin, onto which shaft the paddlewheel and agitator are attached. Beverage dispenser manufacturers have integrated ice dispensers into beverage dispensers.
Heretofore, removal of the drive gear and motor for repair or replacement has been difficult. Currently, service personnel must access the ice bin to remove the ice agitation motor. This removal is difficult because the drive shaft is attached to the paddlewheel and agitator, often using a pin, in a location that requires access to the ice storage bin. Any ice in the storage bin must be removed in order to disconnect the pin, allowing the drive shaft to be disconnected from the paddlewheel. Removal of the motor becomes even more time consuming if an ice making machine, automatically supplying ice, is mounted over the ice storage bin. The icemaker must then be moved or removed to access the storage bin to disconnect the pin. The result can be an increase in the cost of a service call to fix or replace an ice dispenser agitation motor. Accordingly, it would be desirable to connect a drive mechanism to a paddlewheel of an ice dispenser so that the drive shaft can be disengaged from the paddlewheel in order to be able to remove the drive mechanism from the ice dispenser without accessing the ice storage bin.
An ice dispenser has been invented in which the ice agitation motor can be removed without needing access to the ice storage bin. In a first aspect, the invention is an ice dispenser comprising an ice storage bin with a drive shaft aperture and an ice dispensing aperture; an ice dispensing chute connected to the storage bin in proximity to the ice dispensing aperture; a paddlewheel inside the storage bin; and a drive mechanism, including a drive shaft passing through the drive shaft aperture, for rotation of the paddlewheel. The drive shaft is connected to the paddlewheel in such a fashion that the paddlewheel is prevented from disengaging from the drive shaft during normal operation of the ice dispensing apparatus, but the drive shaft can be disengaged from the paddlewheel in order to be able to remove the drive mechanism from the ice dispenser without accessing the ice storage bin.
In another aspect, the invention is a paddlewheel for use in an ice dispenser, the paddlewheel comprising molded plastic, and including a rigid coupler molded into the paddlewheel having first and second axial opening at opposite ends for receiving a drive shaft and an agitator shaft, the coupler having a larger dimension in its central section than at its ends.
In still another aspect, the invention is a combined ice and beverage dispenser comprising at least one beverage dispensing nozzle; an ice storage bin with a drive shaft aperture and an ice dispensing aperture; an ice dispensing chute connected to the storage bin in proximity to the ice dispensing aperture; at least one paddlewheel located in the ice storage bin, the paddlewheel being made of molded plastic and comprising a rigid coupler molded into the paddlewheel, extending axially through the paddlewheel, the coupler having a first opening; and a drive motor and gear assembly having a drive shaft extending through the drive shaft aperture and into the coupler. The drive shaft fits into the first opening of the coupler. The drive shaft and opening have surfaces configured to transmit torque from the drive shaft, through the coupler, to rotate the paddlewheel. The drive shaft slides into the coupler to engage the paddlewheel during normal operation, so that the drive motor and gear assembly can be detached from the paddlewheel without accessing the ice storage bin.
With the present invention, a service person can remove the ice agitation motor from the front of the dispenser without ever having to access the inside of the storage bin. An automatic ice maker placed over the bin to automatically supply ice therefore does not need to be moved when an ice agitation motor requires service. These and other advantages of the invention, as well as the invention itself, will be better understood in view of the attached drawings.
The present invention will now be further described. In the following passages, different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
A phrase used in the specification and claims has a meaning defined as follows. The phrase “the drive shaft can be disengaged from the paddlewheel in order to be able to remove the drive mechanism from the ice dispenser without accessing the ice storage bin” means that ice can be left in the storage bin adjacent to the paddlewheel and the driving mechanism can be uncoupled from the paddlewheel without anyone having to reach into the ice storage bin, or any tools needing to be used inside the ice storage bin.
When the agitator needs to be disconnected from the drive shaft 116, pin 136 is pulled and the agitator is shifted to the left (in
A drive mechanism, such as motor and gear assembly 40, includes a drive shaft 16 passing through the drive shaft aperture 64 and extends into the ice storage bin 18. The drive shaft 16 is driven by the drive mechanism and coupled to the paddlewheel 20 and to the agitator 30 so as to agitate ice in the bin when the drive mechanism rotates the paddlewheel 20. The drive shaft 16 is connected to the paddlewheel 20 in such a fashion that the paddlewheel 20 is prevented from disengaging from the drive shaft 16 during normal operation of the ice dispensing apparatus, but the drive shaft can be disengaged from the paddlewheel in order to be able to remove the drive mechanism 40 from the ice dispenser 10 without accessing the ice storage bin 18, as shown in
The connection of the drive shaft 16 to the paddlewheel 20 comprises a coupler 50, extending axially through the paddlewheel. The coupler 50 is made of a rigid material, having a Young's modulus of at least 2,000,000 psi, and has two axial openings 52, 54, separated by a wall 56 in its center region (
The outside of the coupler 50 has a generally hexagonal cross section (
A bushing 70 (
The paddlewheel 20 and ice storage bin 18 have an interconnection at the drive shaft aperture that keeps the paddlewheel aligned with the drive shaft aperture even when the drive shaft 16 is not present. The interconnection provides an extension to the wall of the ice storage bin so that the paddlewheel fits within a recess. In a preferred embodiment, the extension is provided by a collar 59 on the coupler, and a paddlewheel bushing 60 (
The motor drive shaft 16 has chamfers in the axial direction at the double ‘D’ area to compensate for any misalignment, up to 15 degrees, to ease installation. Also the end of the motor shaft has a chamfer around the end to likewise ease insertion of the motor shaft into the coupler 50.
The coupler 50, having a double ‘D’ configuration, provides driving means while allowing the removal of the motor without removing any pins, screw or any other fastening device. To remove the motor, two pins (not shown) accessible from the front of the dispenser, are pulled and the wiring harness is disconnected, and the motor is pulled out without any further steps.
One benefit of the preferred embodiment is that the coupler 50, when made of molded metal or rigid plastic, is less expensive than a machined coupling of the prior art. The coupler may be made of molded metal or a rigid plastic having a Young's modulus of at least 2,000,000 psi, such as a glass filled nylon, particularly Grivory GV-6H, available from EMS-CHEMIE (North America) Inc., 2060 Corporate Way, Sumter, S.C. 29151, which has a Young's modulus of 20,000 MPa, about 2,900,000 psi. By contrast, the paddlewheel 20 will typically be made of a talc filled polypropylene having a Young's modulus of about 300,000 psi.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. For example, the paddlewheel bushing could be a molded part of a plastic ice bin rather than a separate piece. Further, parts of the ice dispenser need not always be directly connected together as shown in the drawings. Such changes and modifications can be made without departing from the spirit and scope of the present invention and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.