The present disclosure relates to a gas turbine engine, and in particular, to a case structure therefor.
Gas turbine engines typically include one or more rotor shafts that transfer power and rotary motion from a turbine section to a compressor section and fan section. The rotor shafts are supported within an engine static structure which is typically constructed of modules with individual case sections which are joined together at bolted flanges. The flanges form a joint capable of withstanding the variety of loads transmitted through the engine static structure.
A front center body support for a gas turbine engine according to an exemplary aspect of the present disclosure includes a front center body section, a bearing section and a frustro-conical interface section about an axis, the frustro-conical interface section between the front center body section and the bearing section.
A gas turbine engine according to an exemplary aspect of the present disclosure includes a front center body support defined about an engine longitudinal axis, a centering spring mounted within the front center body support and a flexible support mounted within the front center body support.
A method for assembling a gas turbine engine according to an exemplary aspect of the present disclosure includes mounting a flexible support within a front center body support.
Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:
The engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 may drive the fan 42 either directly or through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate about the engine central longitudinal axis A which is collinear with their longitudinal axes.
Core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed with the fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The turbines 54, 46 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
The main engine shafts 40, 50 are supported at a plurality of points by the bearing system 38 within the static structure 36. In one non-limiting embodiment, bearing system 38 includes a number two bearing system 38A located within the compressor section 24.
With reference to
The flex support 68 is a generally cylindrical structure which provides a flexible attachment of the geared architecture 48 within the front center body support 62. That is, the flex support 68 reacts the torsional loads from the geared architecture 48 and facilitates vibration absorption as well as other support functions.
The centering spring 70 is a generally cylindrical cage-like structural component with a multiple of beams which extend between flange end structures. The centering spring 70 facilitates a resilient position of the bearing package 66 with respect to the low speed spool 30. In one embodiment, the beams are double-tapered beams arrayed circumferentially to control a radial spring rate that may be selected based on a plurality of considerations including, but not limited to, bearing loading, bearing life, rotor dynamics, and rotor deflection considerations.
The front center body support 62 includes a front center body section 72 and a bearing section 74 defined about axis A with a frustro-conical interface section 76 therebetween. The front center body section 72 at least partially defines the core flowpath into the low pressure compressor 44. That is the front center body section 72 includes an annular passage with a multiple of front center body vanes 72A, 72B (
The bearing section 74 is defined radially inward of the front center body section 72. The bearing section 74 locates the bearing package 66 and the seal package 64 relative to the low speed spool 30.
The frustro-conical interface section 76 combines the front center body section 72 and the bearing section 74 to form a unified load path, free of kinks typical of a conventional flange joint, from the bearing package 66 to the outer periphery of the engine static structure 36. The frustro-conical interface section 76 may include a weld W or, alternatively, be an integral section such that the front center body support 62 is a unitary component. The integral, flange-less arrangement of the frustro-conical interface section 76 facilitates a light weight, reduced part count arrangement with an increased ability to tune the overall stiffness to achieve rotor dynamic requirements. Such an arrangement also further integrates functions such as oil and air delivery within the bearing compartment which surrounds bearing package 66.
With reference to
The arrangement locates the fasteners 88 to provide access from a forward section of the front center body assembly 60 opposite the bearing package 66 of the number two bearing system 38A which facilitates assembly and disassembly.
It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.
Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.
The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.