The present invention relates to a front end for a high frequency receiver, which front end comprises a low noise amplifier.
The present invention also relates to a high frequency receiver, which is provided with such a front end comprising a low noise amplifier, and which is provided with quadrature mixers coupled to the low noise amplifier, and relates to a quadrature low noise amplifier for application in the high frequency receiver.
The present invention also relates to a communication device, for example a radio receiver, transceiver or a telephone, such as a mobile or cordless telephone provided with such a high frequency receiver.
Such a receiver is known from the article ‘A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications’, By J. C. Rudell et al, IEEE Journal of Solid-State Circuits, vol. 32, No. 12, December 1997, pages 2071-2088. Several possible receiver architectures are disclosed in the article, wherein the high radio frequency (RF) front end of the receiver successively comprises an antenna, an RF filter, a low noise amplifier followed by intermediate frequency (IF) and mixer stages. One or more local oscillators (LO) are used for mixing an RF signal to the IF frequency, which may also be a near zero, or zero frequency signal. The problem of local oscillator signal leakage to mixer inputs, moderate LO isolation and self-mixing is known to result in unwanted even varying DC offsets at outputs of the various mixers. The DC offsets in turn give rise to reduction of the dynamic range of the receiver requiring additional technical measures, which are difficult to integrate on a limited chip area, increase costs, as well as power consumption.
Therefore it is an object of the present invention to provide an RF front end and RF receiver, which may be integrated fully on a limited chip area against reduced costs, and which gives rise to reduced DC offsets.
Thereto the front end and high frequency receiver according to the invention are characterised in that the low noise amplifier (LNA) circuit is a quadrature LNA circuit.
It is an advantage of the front end and HF receiver according to the present invention that the inventor has realised that by introducing a quadrature LNA circuit in front of the quadrature mixers, inputs of the mixers are being isolated by the quadrature LNAs. As a consequence leakage of the quadrature local oscillator signals to the mixer inputs is effectively prevented, which reduces DC offsets at outputs of the mixers. In addition this reduction increases the dynamic range of the high frequency receiver according to the invention. Furthermore it has been found that the quadrature LNAs may even for certain applications have a moderate amplification factor around one, or lower, such that simple quadrature impedance transformers result. This reduces the power consumption of these LNA transformers and decreases their occupied IC chip area.
An embodiment of the high frequency receiver according to the invention is characterised in that quadrature paths of the quadrature low noise amplifier are implemented differentially. This advantageously results in reduced second order distortion effects. In addition sensitivity towards substrate bouncing is decreased, which means that again signal distortion is kept to a minimum.
A further embodiment of the high frequency receiver according to the invention is characterised in that the differential quadrature low noise amplifier is constructed as a class AB operating circuit.
Such an embodiment has a high linearity, which reduces intermodulation distortion, but is also capable of providing sufficient output current for driving further circuitry which is coupled to such a class AB operating circuit.
A still further embodiment, which is easy to implement and has a reduced number of components to realise the high frequency receiver according to the invention is characterised in that the quadrature low noise amplifier comprises a cascode arrangement of semiconductors.
Suitable preferred semiconductors are of the type MOST, such as NMOST or PMOST, or FET, such as MESFET, or the like.
Another embodiment of the high frequency receiver according to the invention is characterised in that across the cascode arrangement of semiconductors there is connected a capacitor.
Advantageously this capacitor acts as a local battery for the cascode arrangement of semiconductors, and also serves to decrease third harmonic distortion by approximately 10 dB.
An embodiment of the high frequency receiver according to the invention, which is preferred because it improves linearity by cancelling gain mismatch between the quadrature LNAs, is characterised in that the high frequency receiver comprises two quadrature choppers coupled between respective outputs of the quadrature low noise amplifiers and respective inputs of the quadrature mixers.
If in still another embodiment of the high frequency receiver according to the invention the receiver is characterised in that the quadrature choppers and quadrature mixers are combined to passive quadrature choppers/mixers, then a still further decrease of power consumption can be realised, which is also very important in relation to developments towards a one chip receiver.
Similar advantages and favourable results can be mentioned for a communication device, for example a radio receiver, transceiver or a telephone, such as a mobile or cordless telephone provided with such a high frequency receiver.
At present the high frequency receiver according to the invention will be elucidated further together with its additional advantages while reference is being made to the appended drawing, wherein similar components are being referred to by means of the same reference numerals. In the drawing:
The receiver 1 may in a further embodiment comprise quadrature choppers 10-1 and 10-2.
A from a viewpoint of high linearity and high isolation preferred embodiment of an I or Q LNA 2 is shown in
The LNA 2 of
Whilst the above has been described with reference to essentially preferred embodiments and best possible modes it will be understood that these embodiments are by no means to be construed as limiting examples of the devices concerned, because various modifications, features and combination of features falling within the scope of the appended claims are now within reach of the skilled person.
Number | Date | Country | Kind |
---|---|---|---|
01200238 | Jan 2001 | EP | regional |
This application is a continuation of prior U.S. patent application Ser. No. 10/055,388 filed on Jan. 23, 2002 now U.S. Pat. No. 7,787,847 which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2730699 | Gratian | Jan 1956 | A |
3514542 | Farmer | May 1970 | A |
4420130 | Regipa | Dec 1983 | A |
5033110 | Harman | Jul 1991 | A |
5140703 | Payne | Aug 1992 | A |
5507036 | Vagher | Apr 1996 | A |
5546048 | Sano et al. | Aug 1996 | A |
6195400 | Maeda | Feb 2001 | B1 |
6317589 | Nash | Nov 2001 | B1 |
6509799 | Franca-Neto | Jan 2003 | B1 |
6535720 | Kintis et al. | Mar 2003 | B1 |
6546237 | Glas | Apr 2003 | B1 |
6892061 | Asam | May 2005 | B2 |
7403758 | Rector | Jul 2008 | B2 |
7787847 | Dijkmans et al. | Aug 2010 | B2 |
20020039039 | Maligeorgos | Apr 2002 | A1 |
20020141511 | Vishakhadatta et al. | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
1 035 691 | Sep 2000 | EP |
2488093 | Feb 1982 | FR |
57-073974 | May 1982 | JP |
10-65442 | Mar 1998 | JP |
2000-295305 | Oct 2000 | JP |
2002-217769 | Aug 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20100240336 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10055388 | Jan 2002 | US |
Child | 12800960 | US |