The present invention relates to a front fender for an automobile.
Recent European standards establish that the front part of an automobile must not transmit excessive stresses to the legs of a pedestrian in case of frontal collisions. In order to simulate the frontal collision against a pedestrian, European standards contemplate the use of a cylindrical impactor arranged vertically which is hurled at a speed of 40 km/h against the front part of an automobile; following such impact, sensors mounted on the impactor must not record stresses higher than the threshold values established by European standards.
In order to avoid transmitting excessive stresses to the legs of a pedestrian in case of frontal collision, the front fender must present an appropriate deformability. For such reason, it would be advisable to form the front fender of an automobile by molded plastic material of thermoplastic type (e.g. polypropylene). However, making a front fender which presents an overall length of 1.5-2 meters by thermoplastic plastic material molding requires the creation of a very complex and costly production system which requires a yearly production rate of at least several thousand of parts to be economically amortized.
For a more limited yearly production rate (e.g. fewer than 1000 parts per year), it is much more economically convenient to form a front fender by thermosetting plastic material, such as a fiberglass-filled resin using, for example, RTM (Resin Transfer Molding) technology; by way of example, in case of very limited production rates (less than 100 parts per year), the cost of a front fender formed by molded plastic material of the thermoplastic type is 2 to 3 times higher than the cost of a similar front fender formed by fiberglass-filled resin using RTM technology.
However, a front fender formed by fiberglass-filled resin is much stiffer than a similar front fender formed by plastic material of the thermoplastic type, because the fiberglass-filled resin is much stiffer than the plastic material of the thermoplastic type. Consequently, due to is high rigidity, a front fender formed by fiberglass-filled resin transmits very high stress to the legs of a pedestrian in case of frontal collision and thus may difficulty comply with the limits determined by the above-mentioned European standards.
It is the object of the present invention to provide a front fender for an automobile, which fender is free from the above-described drawbacks and is concurrently easy and cost-effective to manufacture.
According to the present invention, a front fender for an automobile as claimed in the appended claims is provided.
The present invention will now be described with reference to the accompanying drawings which illustrate a non-limitative example of embodiment thereof, in which:
In
Fender 2 comprises an external element 4, which presents a “C”-shaped section and an enveloping shape so as to cover automobile 1 both frontally and laterally. External element 4 consists of a single thermosetting plastic material shell formed by fiberglass-filled resin using either RTM (Resin Transfer Molding) or SMC (Sheet Molding Compound) technology. Furthermore, fender 2 comprises a supporting trestle 5 (shown in
As shown in
As shown in
Furthermore, as shown in
As shown in
As shown in
As shown in
Finally, external element 4 supports a cowling 17 arranged in central position and supported by means of a number of collapsible brackets 18, each of which is integral on one side with a portion of cowling 17 and on opposite side is screwed to an “L”-shaped bracket rigidly connected (riveted and/or glued) to external element 4. Each collapsible bracket 18 presents a pre-weakened central portion, which is folded as a “V” to longitudinally give in case of collision.
External element 4 of above-described fender 2 is formed by fiberglass-filled resin and is thus particularly rigid; however, in virtue of the special interface between external element 4 and frame 3 of automobile 1, external element 4 is capable of giving in case of a front collision, thus limiting the stresses which are transmitting during the frontal collision itself. Consequently, above-described fender 2 transmits contained stress to the legs of a pedestrian in case of frontal collision and thus easily complies with the limits determined by European standards.
In this regard, it is important to underline that in case of frontal collision, external element 4 retracts longitudinally by effect of slot-shaped holes 10 and turns downwards by effect of the bending of sword 8.
Number | Date | Country | Kind |
---|---|---|---|
BO2006A000487 | Jun 2006 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2007/001706 | 6/22/2007 | WO | 00 | 4/10/2009 |