The device is in the field of cooking appliances, and more specifically, a ventilation system of a cooking appliance that incorporates one or more ventilation towers towards a front of the cooking appliance.
In at least one aspect, a cooking appliance includes a housing having a sidewall and a front panel, wherein a heating cavity is defined within the housing. An operable door panel is rotationally coupled proximate the front panel and operable to provide selective access to the heating cavity via an aperture defined within the front panel. A heat source is in thermal communication with the heating cavity and the front panel. A blower is disposed within an interstitial space at least partially defined by an outer surface of the housing. A ventilation tower is attached to the sidewall and positioned proximate the front panel. Selective operation of the blower draws ventilation air from an external region proximate the front panel and into the interstitial space via the ventilation tower.
In at least another aspect, a heating and ventilation system for a cooking appliance includes a heat source that selectively delivers heat to a heating cavity defined within a housing. An outer ventilation path extends around at least a portion of an exterior of the housing. A ventilation tower is disposed proximate a sidewall of the housing and in communication with the outer ventilation path. A blower is disposed within the outer ventilation path and is selectively operable to move ventilation air from the ventilation tower and into the outer ventilation path. The ventilation tower includes a side vent that cooperates with the blower to direct cooling air from areas external to the outer ventilation path into the ventilation tower to at least partially define the ventilation air.
In at least another aspect, a heating appliance includes an upper housing including an upper heat source that delivers heat to an upper heating cavity defined within the upper housing. A lower housing includes a lower heat source that delivers heat to a lower heating cavity defined with in the lower housing. A heating and ventilation system includes an outer ventilation path extending around an outer surface of each of the upper and lower housings. Upper and lower ventilation towers are disposed at sidewalls of the upper and lower housings, respectively. Each of the upper and lower ventilation towers are in communication with the outer ventilation path. At least one blower is disposed within the outer ventilation path and is selectively operable to move ventilation air from at least one of the upper and lower ventilation towers and into the outer ventilation path. Each ventilation tower of the upper and lower ventilation towers includes a side vent that cooperates with the at least one blower to direct cooling air from areas external to the outer ventilation path and the upper and lower housings and into the outer ventilation path to partially define the ventilation air.
These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in
As exemplified in
According to various aspects of the device, as exemplified in
Referring again to
During operation of the blower 36, as exemplified in
During operation of the heat source 34, heat 76 from the heating cavity 22 may infiltrate through the sidewalls 18 and into these interstitial spaces 38. If this heated air 74 within the interstitial spaces 38 is recirculated, the interstitial space 38 may experience an undesirable high temperature that could damage the appliance 14 as well as the cabinet structure 50 surrounding the cooking appliance 14. By positioning the ventilation towers 10 proximate the front panel 20, the blower 36 can create the negative pressure area 70 within and in front of the ventilation towers 10 to draw the cooling air 62 through the side vent 60, into the ventilation tower 10, and toward the blower 36 for delivery throughout the various interstitial spaces 38 of the cooking appliance 14 within the cabinet structure 50. This movement of the cooling air 62 through the interstitial space 38 serves to cool, at least, the cabinet structure 50 surrounding the housing 16
Referring again to
Referring again to
Referring again to
Referring again to
In various aspects of the device, the interstitial space 38 that surrounds at least a portion of the housing 16 for the cooking appliance 14 can include a superior area 100 that is typically positioned above the housing 16. Operation of the blower 36 serves to move the ventilation air 42 from this superior area 100 above the housing 16 to an anterior area 102 typically located behind the housing 16. Operation of the blower 36 moves the ventilation air 42, which typically includes some cooling air 62 obtained through the ventilation tower 10, and moves this combined ventilation air 42 and cooling air 62 sequentially through the superior area 100 and anterior area 102 to a ventilation outlet 104 of the air handling system 12.
According to various aspects of the device, the ventilation outlet 104 can be positioned within the front panel 20 at a lower portion 110 of the front panel 20. Accordingly, the ventilation air 42 that is moved through the ventilation outlet 104 is pushed through a lower portion 110 of the front panel 20 and is projected in an outward direction 112 that is generally perpendicular to the front panel 20. During operation of the blower 36, cooling air 62 is drawn or suctioned into the ventilation tower 10 through the side vent 60, because the side vent 60 is oriented substantially parallel with the front panel 20, cooling air 62 is drawn in from areas in front of and toward the sides of the front panel 20 in an inward direction 114 that is generally perpendicular to the outward direction 112. This configuration of the side vent 60 and the ventilation outlet 104 as being oriented in generally perpendicular directions to one another can serve to prevent the negative pressure area 70 within the ventilation tower 10 from drawing in the ejected ventilation air 42 that has left the ventilation outlet 104. This helps to ensure that the cooling air 62 obtained within the ventilation tower 10 through the side vent 60 is at or near room temperature.
Referring again to
The blower 36 for the heating and ventilation system is typically disposed within the outer ventilation path 116 and is selectively operable to move ventilation air 42 from the ventilation tower 10 and into other areas of the outer ventilation path 116. The ventilation tower 10 includes the side vent 60 that cooperates with the blower 36 to create the negative pressure area 70 that generates the suction 72 for drawing in cooling air 62 from the surrounding environment and to the side vent 60 and into the ventilation tower 10. This negative pressure area 70 causes the suction 72 that draws cooling air 62 from areas around and in front of the cooking appliance 14 for adding to the ventilation air 42 to be maintained or substantially maintained within desired temperatures. The cooling air 62 obtained through the ventilation tower 10 via the side vent 60 moves through the interstitial space 38 to at least partially cool the ventilation air 42 that is contemporaneously moved through the outer ventilation path 116.
As discussed previously, and as exemplified in
The operable door panel 30 is coupled to the housing 16 proximate the front panel 20 of the housing 16. The operable door panel 30 provides selective access to the heating cavity 22 via the aperture 32 defined within the front panel 20. According to various aspects of the device, the operable door panel 30 can be a rotationally operable door, a sliding panel, a vertically or horizontally translating door that is connected by a linkage mechanism with the housing 16, and other similar door panel 30 types. The handle 64 is typically attached to the operable door panel 30 and the ventilation tower 10 is positioned adjacent to the front panel 20 and proximate the handle 64 of the operable door panel 30 when the operable door panel 30 is in a closed position 130. Movement of the cooling air 62 through the side vent 60 to define at least a portion of the ventilation air 42 that is moved through the outer ventilation path 116 at least partially limits thermal communication between the heat source 34 and the handle 64. In this manner, heat 76 can be directed away from the handle 64 to prevent the handle 64 from achieving the unnecessarily high temperature that may be undesirable to users of the appliance 14.
Referring again to
Referring again to
Referring again to
In various aspects of the device, the inner and outer panels 80, 82 can be stamped members that can be connected together to define the ventilation tower 10 for incorporation within the heating and ventilation system of the appliance 14. In such an embodiment, the inner panel 80 can be attached or otherwise connected to a side panel 160 of the housing 16. The outer panel 82 can then attach to the inner panel 80. The front opening 150 defined between the inner and outer panels 80, 82 serves to receive the suctioned cooling air 62 through the side vent 60 and allows for this cooling air 62 to be suctioned into the air channel 84 defined within the ventilation tower 10. The inner and outer panels 80, 82 can be connected via various connecting methods and mechanisms that can include, but are not limited to, welding, fasteners, adhesives, mating engagements, combinations thereof, and other similar connecting methods and mechanisms.
Referring again to
Upper and lower ventilation towers 180, 182 can be disposed at or proximate sidewalls 18 of the upper and lower housings 52, 54, respectively. In this manner, each of the upper and lower housings 52, 54 include a dedicated side vent 60 that draws cooling air 62 into the upper and lower ventilation towers 180, 182, respectively, and into the outer ventilation path 116 for the appliance 14. The outer ventilation path 116 for the appliance 14 can extend above the upper housing 52, between the upper and lower housings 52, 54, behind one or both of the upper and lower housings 52, 54 and to one or more dedicated ventilation outlets 104. Where one ventilation outlet 104 is included, that ventilation outlet 104 is typically positioned below each of the upper and lower housings 52, 54.
At least one blower 36 is disposed within the outer ventilation path 116. Operation of this blower 36 is selectively operable to move ventilation air 42 from at least one of the upper and lower ventilation towers 180, 182 and into the outer ventilation path 116. As discussed previously, each ventilation tower 10 of the upper and lower ventilation towers 180, 182 includes a side aperture 32 that cooperates with the blower 36 to direct cooling air 62 from areas external to the outer ventilation path 116 and in front of the appliance 14. This cooling air 62 is moved through the respective side vent 60 and into the respective upper and lower ventilation towers 180, 182. The cooling air 62 is then moved into the outer ventilation path 116 via the upper and lower ventilation towers 180, 182 to at least partially define the ventilation air 42 that is moved through the outer ventilation path 116.
In various aspects of the device, the appliance 14 can include upper and lower blowers 190, 192 that can operate selectively and independently with respect to one another. In such an embodiment, an upper blower 190 typically operates with an upper ventilation tower 180 and a lower blower 192 cooperates with a lower ventilation tower 182. Additionally, where separate blowers 36 are included, each housing 16 may include its own dedicated outer ventilation path 116 and dedicated ventilation outlet 104. Alternatively, and as discussed above, a single blower 36 may be used to move ventilation air 42 through a single outer ventilation path 116 and to also generate the negative pressure areas 70 within and around the ventilation towers 10 for drawing cooling air 62 through the side apertures 32 and into the air channel 84 for each of the upper and lower ventilation towers 180, 182.
Referring again to
In various aspects of the device, as exemplified in
According to various aspects of the device, the side ventilation towers 10 can be utilized within various heating-type appliances 14. These appliances 14 can include, but are not limited to, ovens, water heaters, dishwashers, laundry-type appliances, refrigerators, freezers, various small appliances, and other similar appliances and fixtures located within commercial and residential settings.
In various aspects of the device, the sidewalls 18 of the appliance 14 can be modified to incorporate various aspects of the ventilation tower 10. The inner panel 80 of the ventilation tower 10 can be seated within a side panel 160 for the housing 16. It is also contemplated that the inner panel 80 for the ventilation tower 10 can be incorporated within, or integrally formed as part of, this side panel 160. In such an embodiment, the outer panel 82 for the ventilation tower 10 can be attached to the side panel 160 to form the air channel 84, front opening 150 and top aperture 86 for moving cooling air 62 from the side vent 60 and into the interstitial space 38. A top panel 210 for the housing 16 can also be modified to allow for incorporation of the ventilation tower 10 therein. A cutout 212 can be provided in the top panel 210 to allow for attachment of the inner panel 80 of the ventilation tower 10. Accordingly, the side panel 160 and top panel 210 of the housing 16 can be used to at least partially define the air channel 84 that moves the cooling air 62 from the side vent 60, through the air channel 84, and into the interstitial space 38 that forms at least a portion of the outer ventilation path 116. The side panel 160, top panel 210, and inner and outer panels 80, 82 of the ventilation tower 10 can be used to at least partially seal off areas of the air channel 84 to allow for formation of the negative pressure area 70 that suctions 72 or draws cooling air 62 in through the side vents 60 and through the air channel 84 for delivery to the outer ventilation path 116.
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
The present application is a continuation of U.S. patent application Ser. No. 16/021,730 filed Jun. 28, 2018, entitled FRONTAL COOLING TOWERS FOR A VENTILATION SYSTEM OF A COOKING APPLIANCE, the entire disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 16021730 | Jun 2018 | US |
Child | 16807454 | US |