Frontal cooling towers for a ventilation system of a cooking appliance

Information

  • Patent Grant
  • 10619862
  • Patent Number
    10,619,862
  • Date Filed
    Thursday, June 28, 2018
    6 years ago
  • Date Issued
    Tuesday, April 14, 2020
    4 years ago
Abstract
A cooking appliance includes a housing having a sidewall and a front panel, wherein a heating cavity is defined within the housing. An operable door panel is rotationally coupled proximate the front panel and operable to provide selective access to the heating cavity via an aperture defined within the front panel. A heat source is in thermal communication with the heating cavity and the front panel. A blower is disposed within an interstitial space at least partially defined by an outer surface of the housing. A ventilation tower is attached to the sidewall and positioned proximate the front panel. Selective operation of the blower draws ventilation air from an external region proximate the front panel and into the interstitial space via the ventilation tower.
Description
BACKGROUND

The device is in the field of cooking appliances, and more specifically, a ventilation system of a cooking appliance that incorporates one or more ventilation towers towards a front of the cooking appliance.


SUMMARY

In at least one aspect, a cooking appliance includes a housing having a sidewall and a front panel, wherein a heating cavity is defined within the housing. An operable door panel is rotationally coupled proximate the front panel and operable to provide selective access to the heating cavity via an aperture defined within the front panel. A heat source is in thermal communication with the heating cavity and the front panel. A blower is disposed within an interstitial space at least partially defined by an outer surface of the housing. A ventilation tower is attached to the sidewall and positioned proximate the front panel. Selective operation of the blower draws ventilation air from an external region proximate the front panel and into the interstitial space via the ventilation tower.


In at least another aspect, a heating and ventilation system for a cooking appliance includes a heat source that selectively delivers heat to a heating cavity defined within a housing. An outer ventilation path extends around at least a portion of an exterior of the housing. A ventilation tower is disposed proximate a sidewall of the housing and in communication with the outer ventilation path. A blower is disposed within the outer ventilation path and is selectively operable to move ventilation air from the ventilation tower and into the outer ventilation path. The ventilation tower includes a side vent that cooperates with the blower to direct cooling air from areas external to the outer ventilation path into the ventilation tower to at least partially define the ventilation air.


In at least another aspect, a heating appliance includes an upper housing including an upper heat source that delivers heat to an upper heating cavity defined within the upper housing. A lower housing includes a lower heat source that delivers heat to a lower heating cavity defined with in the lower housing. A heating and ventilation system includes an outer ventilation path extending around an outer surface of each of the upper and lower housings. Upper and lower ventilation towers are disposed at sidewalls of the upper and lower housings, respectively. Each of the upper and lower ventilation towers are in communication with the outer ventilation path. At least one blower is disposed within the outer ventilation path and is selectively operable to move ventilation air from at least one of the upper and lower ventilation towers and into the outer ventilation path. Each ventilation tower of the upper and lower ventilation towers includes a side vent that cooperates with the at least one blower to direct cooling air from areas external to the outer ventilation path and the upper and lower housings and into the outer ventilation path to partially define the ventilation air.


These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a front perspective view of a cooking appliance incorporating an aspect of the ventilation towers within the ventilation system of the cooking appliance;



FIG. 2 is a cross-sectional view of the cooking appliance of FIG. 1 taken along line II-II and showing movement of ventilation air through the ventilation towers;



FIG. 3 is a partial cross-sectional view of the appliance of FIG. 1 illustrating movement of ventilation air through the ventilation tower;



FIG. 4 is a cross-sectional perspective view of the appliance generally exemplified in FIG. 3;



FIG. 5 is a partial side elevational view of the appliance of FIG. 1 and showing a gap providing for entry of ventilation air into the ventilation towers; and



FIG. 6 is a cross-sectional view of an aspect of a cooking appliance, taken through a ventilation tower and showing movement of air into an interstitial space within the cooking appliance;



FIG. 7 is a cross-sectional view of an aspect of the ventilation tower engaged with the sidewall of the appliance;



FIG. 8 is an exploded perspective view of the inner and outer panels of an aspect of the ventilation tower;



FIG. 9 is a perspective view of an aspect of a top panel for a housing of a cooking appliance; and



FIG. 10 is a perspective view of a side panel for a housing of a cooking appliance.





DETAILED DESCRIPTION OF EMBODIMENTS

For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in FIG. 1. However, it is to be understood that the device may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


As exemplified in FIGS. 1-6, reference numeral 10 generally refers to a ventilation tower that is incorporated within an air handling system 12 for a cooking appliance 14. According to various aspects of the device, the cooking appliance 14 includes a housing 16 having a sidewall 18 and a front panel 20. A heating cavity 22 is defined within the housing 16, where the heating cavity 22 provides space within which cooking operations can be performed. The housing 16 can include multiple sidewalls 18. These sidewalls 18 can include a top wall 24, a bottom wall 26 and a back wall 28 that cooperate to define the heating cavity 22 of the housing 16. An operable door panel 30 is rotationally coupled proximate the front panel 20 of the housing 16 and is operable to provide selective access to the heating cavity 22 via an aperture 32 defined within the front panel 20 of the housing 16. A heat source 34 is disposed in thermal communication with the heating cavity 22 and the front panel 20. A blower 36 for the air handling system 12 is disposed within an interstitial space 38 at least partially defined by an outer surface 40 of the housing 16. The ventilation tower 10 of the air handling system 12 is attached to the sidewall 18 and is positioned proximate the front panel 20. Selective operation of the blower 36 serves to draw ventilation air 42 from an external region 44 proximate the front panel 20 and into the interstitial space 38 via the ventilation tower 10.


According to various aspects of the device, as exemplified in FIGS. 1-6, aspects of the ventilation tower 10 can be used in conjunction with a built-in cooking appliance 14 that is disposed within cabinetry or other fixtures within a commercial or residential kitchen setting. Typically, a cabinet structure 50 surrounds the housing 16 and the interstitial space 38 for the cooking appliance 14 can be defined at least partially between the housing 16 and the cabinet structure 50. Where the built-in cooking appliance 14 is a double-type oven, the interstitial space 38 can also be defined between an upper housing 52 and a lower housing 54 for the cooking appliance 14.


Referring again to FIGS. 3-6, a side vent 60 for the air handling system 12 is provided proximate the front panel 20 and the ventilation tower 10. In this manner, selective operation of the blower 36 draws ventilation air 42 into the ventilation tower 10 via the side vent 60. The positioning of the side vent 60 allows for movement of ventilation air 42 into the side vent 60 from an external region 44 in front of the cooking appliance 14. Accordingly, this ventilation air 42 in front of the cooking appliance 14 takes the form of cooling air 62 that can be moved into the air handling system 12 for the cooking appliance 14 for cooling the cabinet structure 50, the front panel 20, a handle 64 attached to the operable door panel 30, the operable door panel 30 itself, and other portions of the outer surface 40 of the housing 16 for the cooking appliance 14.


During operation of the blower 36, as exemplified in FIGS. 3-6, the blower 36 creates a negative pressure area 70 within and around the ventilation towers 10. This negative pressure area 70 causes a suction 72 through the side vent 60 within the ventilation tower 10 that draws the cooling air 62 from the external region 44 in front of the cooking appliance 14, and into the side vent 60. This cooling air 62 is then drawn into the ventilation towers 10 and then drawn into the various interstitial spaces 38 of the cooking appliance 14 defined between the housing 16 and the cabinet structure 50. By creating this negative pressure area 70 within the ventilation towers 10 and causing a suction 72 of cooling air 62 through the side vent 60, the ventilation towers 10 can ensure that fresh air in the form of the cooling air 62 is drawn in from outside of the appliance 14 and into the interstitial spaces 38 surrounding the housing 16. This also ensures that the housing 16, the cabinet structure 50 and the interstitial spaces 38 defined therebetween are not allowed to overheat through a recirculation of heated air 74 that may be present within these interstitial spaces 38 surrounding the housing 16.


During operation of the heat source 34, heat 76 from the heating cavity 22 may infiltrate through the sidewalls 18 and into these interstitial spaces 38. If this heated air 74 within the interstitial spaces 38 is recirculated, the interstitial space 38 may experience an undesirable high temperature that could damage the appliance 14 as well as the cabinet structure 50 surrounding the cooking appliance 14. By positioning the ventilation towers 10 proximate the front panel 20, the blower 36 can create the negative pressure area 70 within and in front of the ventilation towers 10 to draw the cooling air 62 through the side vent 60, into the ventilation tower 10, and toward the blower 36 for delivery throughout the various interstitial spaces 38 of the cooking appliance 14 within the cabinet structure 50. This movement of the cooling air 62 through the interstitial space 38 serves to cool, at least, the cabinet structure 50 surrounding the housing 16


Referring again to FIGS. 1, 3 and 5, during operation of the heat source 34 for the cooking appliance 14, the heat source 34 can deliver heat 76 to areas near the front panel 20. This heat 76 delivered to the front panel 20 can cause the front panel 20 and the cabinet structure 50 to become overly warm or hot to the touch. By drawing the cooling air 62 through the side vent 60 and near the front panel 20, the cooling air 62 can serve to at least partially cool the front panel 20, or at least portions of the front panel 20 and the cabinet structure 50. Accordingly, the use of the ventilation tower 10 drawing air through the side vents 60 can result in a cooler temperature of the front panel 20 and the cabinet structure 50 surrounding the housing 16 during operation of the cooking appliance 14.


Referring again to FIGS. 1, 3 and 4, during operation of the cooking appliance 14, heat 76 may infiltrate through portions of the operable door panel 30 and into a handle 64 attached to the operable door panel 30. By drawing cooling air 62 through the side vent 60 and into the ventilation tower 10 during operation of the blower 36, the negative pressure region can draw the cooling air 62 past these areas and also draw heat 76 away from the front panel 20, operable door panel 30 and the handle 64 to prevent these portions of the cooking appliance 14 from being unnecessarily heated during operation of the heat source 34. In this manner, movement of the cooling air 62 through the ventilation tower 10, as well as the suction 72 of the cooling air 62 into the ventilation tower 10 via the side vent 60, can limit thermal communication between the heat source 34 and the handle 64 for the operable door panel 30.


Referring again to FIGS. 3-10, the ventilation tower 10 can include an inner panel 80 and an outer panel 82 that cooperate to form the ventilation tower 10. The inner panel 80 and outer panel 82 define an air channel 84 that extends between the side vent 60 and the interstitial space 38 where the blower 36 is typically located. The inner panel 80 and outer panels 82 define a top aperture 86 positioned proximate a portion of the interstitial space 38 that houses the blower 36 and the air channel 84. The inner and outer panels 80, 82 of the ventilation tower 10 can connect with one another to form a series of enclosed edges 88 that contain the air channel 84 therein to extend between the side vent 60 and the top aperture 86. Selective operation of the blower 36 generates suction 72 within the ventilation tower 10 and through the side vent 60 that draws cooling air 62 from the external region 44 in front of the cooking appliance 14. This cooling air 62 moves through the ventilation tower 10 and forms at least part of the ventilation air 42 that is moved through the interstitial space 38 via the air channel 84 and the top aperture 86 that are formed by the ventilation tower 10. As discussed above, the interstitial space can be at least partially defined between the housing 16 and the cabinet structure 50.


Referring again to FIGS. 3-10, during operation of the blower 36, the negative pressure area 70 can be formed within the air channel 84 to draw cooling air 62 through the side vent 60 and into the ventilation tower 10. During use of the blower 36, amounts of heated air 74 within the interstitial space 38 may also be recirculated. The inclusion of the ventilation tower 10 allows for the addition of cooling air 62 to be mixed with the ventilation air 42 to prevent any recirculated heated air 74 from achieving temperatures that are above a desired heat level. Accordingly, the addition of the cooling air 62 through the side vent 60 in the ventilation tower 10 can at least partially cool the ventilation air 42 that circulates throughout the interstitial space 38.


In various aspects of the device, the interstitial space 38 that surrounds at least a portion of the housing 16 for the cooking appliance 14 can include a superior area 100 that is typically positioned above the housing 16. Operation of the blower 36 serves to move the ventilation air 42 from this superior area 100 above the housing 16 to an anterior area 102 typically located behind the housing 16. Operation of the blower 36 moves the ventilation air 42, which typically includes some cooling air 62 obtained through the ventilation tower 10, and moves this combined ventilation air 42 and cooling air 62 sequentially through the superior area 100 and anterior area 102 to a ventilation outlet 104 of the air handling system 12.


According to various aspects of the device, the ventilation outlet 104 can be positioned within the front panel 20 at a lower portion 110 of the front panel 20. Accordingly, the ventilation air 42 that is moved through the ventilation outlet 104 is pushed through a lower portion 110 of the front panel 20 and is projected in an outward direction 112 that is generally perpendicular to the front panel 20. During operation of the blower 36, cooling air 62 is drawn or suctioned into the ventilation tower 10 through the side vent 60, because the side vent 60 is oriented substantially parallel with the front panel 20, cooling air 62 is drawn in from areas in front of and toward the sides of the front panel 20 in an inward direction 114 that is generally perpendicular to the outward direction 112. This configuration of the side vent 60 and the ventilation outlet 104 as being oriented in generally perpendicular directions to one another can serve to prevent the negative pressure area 70 within the ventilation tower 10 from drawing in the ejected ventilation air 42 that has left the ventilation outlet 104. This helps to ensure that the cooling air 62 obtained within the ventilation tower 10 through the side vent 60 is at or near room temperature.


Referring again to FIGS. 1-6, a heating and ventilation system for the cooking appliance 14 can include the heat source 34 that selectively delivers heat 76 to the heating cavity 22 defined within the housing 16. The outer ventilation path 116 that can include the superior and anterior areas 100, 102 extends around at least a portion of the outer surface 40 of the housing 16. The ventilation tower 10 for the heating and ventilation system is typically disposed at or proximate a sidewall 18 of the housing 16 and in communication with the outer ventilation path 116. The ventilation tower 10 is also typically disposed at a forward portion 120 of the sidewall 18 adjacent the front panel 20. In various aspects of the device, a rear surface 122 of the front panel 20 can define at least a portion of the side vent 60 through which cooling air 62 is delivered into the ventilation tower 10.


The blower 36 for the heating and ventilation system is typically disposed within the outer ventilation path 116 and is selectively operable to move ventilation air 42 from the ventilation tower 10 and into other areas of the outer ventilation path 116. The ventilation tower 10 includes the side vent 60 that cooperates with the blower 36 to create the negative pressure area 70 that generates the suction 72 for drawing in cooling air 62 from the surrounding environment and to the side vent 60 and into the ventilation tower 10. This negative pressure area 70 causes the suction 72 that draws cooling air 62 from areas around and in front of the cooking appliance 14 for adding to the ventilation air 42 to be maintained or substantially maintained within desired temperatures. The cooling air 62 obtained through the ventilation tower 10 via the side vent 60 moves through the interstitial space 38 to at least partially cool the ventilation air 42 that is contemporaneously moved through the outer ventilation path 116.


As discussed previously, and as exemplified in FIGS. 1-6, the heat source 34 can deliver heat 76 to areas proximate the front panel 20 of the housing 16. The selective movement of the cooling air 62 into the ventilation tower 10 through the side vent 60 delivers at least a portion of this heat 76 away from the front panel 20 and the cabinet structure 50. This heat 76 is then delivered into the outer ventilation path 116 in the form of ventilation air 42.


The operable door panel 30 is coupled to the housing 16 proximate the front panel 20 of the housing 16. The operable door panel 30 provides selective access to the heating cavity 22 via the aperture 32 defined within the front panel 20. According to various aspects of the device, the operable door panel 30 can be a rotationally operable door, a sliding panel, a vertically or horizontally translating door that is connected by a linkage mechanism with the housing 16, and other similar door panel 30 types. The handle 64 is typically attached to the operable door panel 30 and the ventilation tower 10 is positioned adjacent to the front panel 20 and proximate the handle 64 of the operable door panel 30 when the operable door panel 30 is in a closed position 130. Movement of the cooling air 62 through the side vent 60 to define at least a portion of the ventilation air 42 that is moved through the outer ventilation path 116 at least partially limits thermal communication between the heat source 34 and the handle 64. In this manner, heat 76 can be directed away from the handle 64 to prevent the handle 64 from achieving the unnecessarily high temperature that may be undesirable to users of the appliance 14.


Referring again to FIGS. 3-6, the inner and outer panels 80, 82 of the ventilation tower 10 can be coupled together to define the air channel 84. This air channel 84 typically extends from the side vent 60 to the outer ventilation path 116. Cooling air 62 moving through the air channel 84 is projected into the outer ventilation path 116 through a top aperture 86 that is defined between the inner and outer panels 80, 82.


Referring again to FIGS. 3-10, the inner panel 80 of the ventilation tower 10 typically attaches to a portion of the exterior of the housing 16. This inner panel 80 can include a seat 140 that receives a portion of the outer panel 82, where the outer panel 82 rests within the seat 140 and is supported by the inner panel 80. The outer panel 82, seated within the inner panel 80, can include a rear flange 142 that at least partially overlaps a portion of the inner panel 80. The various flanges of the inner and outer panels 80, 82 are configured to enclose portions of the air channel 84 to allow for the directional movement of the cooling air 62 and ventilation air 42 through the ventilation tower 10 and into the outer ventilation path 116.


Referring again to FIGS. 2-7, the inner and outer panels 80, 82 define a front opening 150 that is situated near the side vent 60 to allow the negative pressure area 70, generated by operation of the blower 36, to draw or suction cooling air 62 in through the side vent 60 and into the air channel 84 of the ventilation tower 10. The inner and outer panels 80, 82 define enclosed edges 88 at the bottom and rear of the ventilation tower 10. A top aperture 86 is also defined between the inner and outer panels 80, 82, where the top aperture 86 allows for the cooling air 62 and/or ventilation air 42 to move through the air channel 84 and into the outer ventilation path 116 defined within the interstitial space 38 of the cooking appliance 14.


In various aspects of the device, the inner and outer panels 80, 82 can be stamped members that can be connected together to define the ventilation tower 10 for incorporation within the heating and ventilation system of the appliance 14. In such an embodiment, the inner panel 80 can be attached or otherwise connected to a side panel 160 of the housing 16. The outer panel 82 can then attach to the inner panel 80. The front opening 150 defined between the inner and outer panels 80, 82 serves to receive the suctioned cooling air 62 through the side vent 60 and allows for this cooling air 62 to be suctioned into the air channel 84 defined within the ventilation tower 10. The inner and outer panels 80, 82 can be connected via various connecting methods and mechanisms that can include, but are not limited to, welding, fasteners, adhesives, mating engagements, combinations thereof, and other similar connecting methods and mechanisms.


Referring again to FIGS. 1-10, the heating appliance 14 can be in the form of a double oven or stacked oven that can be positioned within a cabinet structure 50. In such an embodiment, the heating appliance 14 can include an upper housing 52 that has an upper heat source 170 that delivers heat 76 to the upper heating cavity 172 defined within the upper housing 52. The heating appliance 14 can also include a lower housing 54 that includes a lower heat source 174 that delivers heat 76 to a lower heating cavity 176 defined within the lower housing 54. The heating and ventilation system for the appliance 14 includes an outer ventilation path 116 that extends around an outer surface 40 of each of the upper and lower housings 52, 54. In this manner, this interstitial space 38 for the double oven configuration of the heating appliance 14 can extend between the upper and lower housings 52, 54 and also between the housing 16 and the cabinet structure 50 that surrounds the upper and lower housings 52, 54 of the cooking appliance 14.


Upper and lower ventilation towers 180, 182 can be disposed at or proximate sidewalls 18 of the upper and lower housings 52, 54, respectively. In this manner, each of the upper and lower housings 52, 54 include a dedicated side vent 60 that draws cooling air 62 into the upper and lower ventilation towers 180, 182, respectively, and into the outer ventilation path 116 for the appliance 14. The outer ventilation path 116 for the appliance 14 can extend above the upper housing 52, between the upper and lower housings 52, 54, behind one or both of the upper and lower housings 52, 54 and to one or more dedicated ventilation outlets 104. Where one ventilation outlet 104 is included, that ventilation outlet 104 is typically positioned below each of the upper and lower housings 52, 54.


At least one blower 36 is disposed within the outer ventilation path 116. Operation of this blower 36 is selectively operable to move ventilation air 42 from at least one of the upper and lower ventilation towers 180, 182 and into the outer ventilation path 116. As discussed previously, each ventilation tower 10 of the upper and lower ventilation towers 180, 182 includes a side aperture 32 that cooperates with the blower 36 to direct cooling air 62 from areas external to the outer ventilation path 116 and in front of the appliance 14. This cooling air 62 is moved through the respective side vent 60 and into the respective upper and lower ventilation towers 180, 182. The cooling air 62 is then moved into the outer ventilation path 116 via the upper and lower ventilation towers 180, 182 to at least partially define the ventilation air 42 that is moved through the outer ventilation path 116.


In various aspects of the device, the appliance 14 can include upper and lower blowers 190, 192 that can operate selectively and independently with respect to one another. In such an embodiment, an upper blower 190 typically operates with an upper ventilation tower 180 and a lower blower 192 cooperates with a lower ventilation tower 182. Additionally, where separate blowers 36 are included, each housing 16 may include its own dedicated outer ventilation path 116 and dedicated ventilation outlet 104. Alternatively, and as discussed above, a single blower 36 may be used to move ventilation air 42 through a single outer ventilation path 116 and to also generate the negative pressure areas 70 within and around the ventilation towers 10 for drawing cooling air 62 through the side apertures 32 and into the air channel 84 for each of the upper and lower ventilation towers 180, 182.


Referring again to FIGS. 1-6, each of the upper and lower doors 194, 196 can include upper and lower handles 198, 200, respectively. In this manner, the upper door 194, being coupled to the upper housing 52 and the lower door 196 coupled to the lower housing 54 provides alternative and selective access to the upper and lower heating cavities 172, 176, respectively. The upper and lower handles 198, 200 that are attached to the upper and lower doors 194, 196, respectively, can be respectively positioned proximate the upper and lower ventilation towers 180, 182 so that heat 76 from the upper and lower heat sources 170, 174 can be directed away from the upper and lower handles 198, 200. As discussed previously, as cooling air 62 moves through the various ventilation towers 10, heat 76 from the heat source 34 can be drawn away from the front panel 20, the operable door panel 30 and the various handles 64. The cooling air 62 from the ventilation towers 10 also draws heat away from the cabinet structure 50 surrounding the upper and lower housings 52, 54. This suction 72 of the cooling air 62 through the ventilation towers 10 can prevent these areas from achieving excessive temperatures that may be undesirable by users of the appliance 14. In this manner, the upper ventilation tower 180 is positioned proximate the upper handle 198 and the lower ventilation tower 180, 182 is positioned proximate the lower handle 200. In this manner, the upper and lower ventilation towers 180, 182 serve to at least partially limit thermal communication from the upper and lower heat sources 170, 174, respectively, to the respective upper and lower handles 198, 200 and also to the cabinet structure 50.


In various aspects of the device, as exemplified in FIGS. 1-10, the various side vents 60 of the upper and lower ventilation towers 180, 182 can be positioned proximate the front panels 20 of the upper and lower housings 52, 54, respectively. Each of these side vents 60 is oriented to draw cooling air 62 from regions in front of and adjacent to the front panel 20. In this manner, cooling air 62 is suctioned into the side vents 60 or drawn into the side vents 60 in an inward direction 114 generally parallel with outer surfaces 40 of the front panels 20 for the appliance 14. As discussed previously, this directional suction 72 of cooling air 62 from areas around and adjacent to the heating appliance 14 can serve to limit the amount of ejected, and typically heated, ventilation air 42 that is recirculated back into the side vents 60 during operation of the blower 36. This also ensures that the cooling air 62 is substantially at room temperature or close to room temperature and minimal amounts of ejected ventilation air 42 is drawn back to the side vents 60.


According to various aspects of the device, the side ventilation towers 10 can be utilized within various heating-type appliances 14. These appliances 14 can include, but are not limited to, ovens, water heaters, dishwashers, laundry-type appliances, refrigerators, freezers, various small appliances, and other similar appliances and fixtures located within commercial and residential settings.


In various aspects of the device, the sidewalls 18 of the appliance 14 can be modified to incorporate various aspects of the ventilation tower 10. The inner panel 80 of the ventilation tower 10 can be seated within a side panel 160 for the housing 16. It is also contemplated that the inner panel 80 for the ventilation tower 10 can be incorporated within, or integrally formed as part of, this side panel 160. In such an embodiment, the outer panel 82 for the ventilation tower 10 can be attached to the side panel 160 to form the air channel 84, front opening 150 and top aperture 86 for moving cooling air 62 from the side vent 60 and into the interstitial space 38. A top panel 210 for the housing 16 can also be modified to allow for incorporation of the ventilation tower 10 therein. A cutout 212 can be provided in the top panel 210 to allow for attachment of the inner panel 80 of the ventilation tower 10. Accordingly, the side panel 160 and top panel 210 of the housing 16 can be used to at least partially define the air channel 84 that moves the cooling air 62 from the side vent 60, through the air channel 84, and into the interstitial space 38 that forms at least a portion of the outer ventilation path 116. The side panel 160, top panel 210, and inner and outer panels 80, 82 of the ventilation tower 10 can be used to at least partially seal off areas of the air channel 84 to allow for formation of the negative pressure area 70 that suctions 72 or draws cooling air 62 in through the side vents 60 and through the air channel 84 for delivery to the outer ventilation path 116.


It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.


For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.


It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.


It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.


It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.


The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.

Claims
  • 1. A cooking appliance comprising: a housing having a sidewall and a front panel, wherein a heating cavity is defined within the housing;an operable door panel rotationally coupled proximate the front panel and operable to provide selective access to the heating cavity via an aperture defined within the front panel;a heat source in thermal communication with the heating cavity and the front panel;a blower disposed within an interstitial space at least partially defined by an outer surface of the housing; anda ventilation tower attached to the sidewall and positioned proximate the front panel, wherein selective operation of the blower draws ventilation air from an external region proximate the front panel and into the interstitial space via the ventilation tower,wherein the ventilation tower is positioned adjacent a handle of the operable door panel, wherein movement of the ventilation air at least partially limits thermal communication between the heat source and the handle.
  • 2. The cooking appliance of claim 1, further comprising: a side vent defined proximate the front panel and the ventilation tower, wherein selective operation of the blower draws the ventilation air into the ventilation tower via the side vent.
  • 3. The cooking appliance of claim 2, wherein operation of the heat source delivers heat to the front panel, and wherein selective movement of the ventilation air through the side vent delivers at least a portion of the heat from the front panel to the interstitial space.
  • 4. The cooking appliance of claim 2, wherein the ventilation tower includes an inner panel and an outer panel, and wherein the inner and outer panels define an air channel that extends between the side vent and the interstitial space.
  • 5. The cooking appliance of claim 4, wherein the inner and outer panels define a top aperture positioned proximate the interstitial space and the air channel, wherein selective operation of the blower draws the ventilation air from the side vent and to the interstitial space via the air channel and the top aperture.
  • 6. The cooking appliance of claim 1, wherein the interstitial space extends from a superior area above the housing to an anterior area behind the housing, and wherein operation of the blower moves the ventilation air sequentially through the superior and anterior areas and to a ventilation outlet.
  • 7. The cooking appliance of claim 6, wherein the ventilation outlet is disposed proximate a lower portion of the front panel.
  • 8. A heating and ventilation system for a cooking appliance, the heating and ventilation system comprising: a heat source that selectively delivers heat to a heating cavity defined within a housing;an outer ventilation path that extends around at least a portion of an exterior of the housing;a ventilation tower disposed proximate a sidewall of the housing and in communication with the outer ventilation path;a blower disposed within the outer ventilation path and selectively operable to move ventilation air from the ventilation tower and into the outer ventilation path, wherein the ventilation tower includes a side vent that cooperates with the blower to direct cooling air from areas external to the outer ventilation path into the ventilation tower to at least partially define the ventilation air;an operable door panel coupled to the housing proximate a front panel of the housing, wherein the operable door panel provides selective access to the heating cavity via an aperture defined within the front panel; anda handle attached to the operable door panel, wherein the ventilation tower is positioned adjacent the front panel and proximate the handle of the operable door panel, wherein movement of the ventilation air through the side vent at least partially limits thermal communication from the heat source and to the handle.
  • 9. The heating and ventilation system of claim 8, wherein operation of the heat source delivers heat to a front panel of the housing, and wherein selective movement of the ventilation air through the side vent delivers at least a portion of the heat from the front panel to the outer ventilation path.
  • 10. The heating and ventilation system of claim 9, wherein the ventilation tower includes inner and outer panels that define an air channel therebetween that extends from the side vent to the outer ventilation path.
  • 11. The heating and ventilation system of claim 10, wherein the inner panel is coupled to the front panel and the sidewall of the housing and the outer panel is coupled to the inner panel to define the side vent proximate the front panel.
  • 12. The heating and ventilation system of claim 11, wherein the inner and outer panels define a top aperture positioned proximate the outer ventilation path, wherein selective operation of the blower draws the ventilation air from the side vent and to the outer ventilation path via the top aperture.
  • 13. The heating and ventilation system of claim 8, wherein the outer ventilation path extends from a superior area above the housing to an anterior area behind the housing, and wherein operation of the blower moves the ventilation air sequentially through the superior and anterior areas and to a ventilation outlet.
  • 14. The heating and ventilation system of claim 13, wherein the ventilation outlet is disposed proximate a lower portion of the front panel of the housing.
  • 15. A heating appliance comprising: an upper housing including an upper heat source that delivers heat to an upper heating cavity defined within the upper housing;a lower housing including a lower heat source that delivers heat to a lower heating cavity defined with in the lower housing;a heating and ventilation system that includes an outer ventilation path extending around an outer surface of each of the upper and lower housings;upper and lower ventilation towers disposed at sidewalls of the upper and lower housings, respectively, each of the upper and lower ventilation towers in communication with the outer ventilation path;at least one blower disposed within the outer ventilation path and selectively operable to move ventilation air from at least one of the upper and lower ventilation towers and into the outer ventilation path, wherein each ventilation tower of the upper and lower ventilation towers includes a side vent that cooperates with the at least one blower to direct cooling air from areas external to the outer ventilation path and the upper and lower housings and into the outer ventilation path to partially define the ventilation air;an upper door coupled to the upper housing, wherein the upper door provides selective access to the upper heating cavity; andan upper handle attached to the upper door, wherein the upper ventilation tower is positioned proximate the upper handle, wherein movement of the ventilation air through the side vent of the upper ventilation tower and into the outer ventilation path at least partially limits thermal communication from the upper heat source and to the upper handle.
  • 16. The heating appliance of claim 15, wherein the at least one blower includes an upper blower that moves ventilation air through a superior portion of the outer ventilation path and a lower blower that moves ventilation air through a lower portion of the outer ventilation path.
  • 17. The heating appliance of claim 15, wherein the side vent of the upper and lower ventilation towers are positioned proximate upper and lower front panels of the upper and lower housings, respectively, and wherein each side vent is oriented to draw cooling air from a direction generally parallel with outer surfaces of the upper and lower front panels.
US Referenced Citations (317)
Number Name Date Kind
1141176 Copeman Jun 1915 A
1380656 Lauth Jun 1921 A
1405624 Patterson Feb 1922 A
1598996 Wheelock Sep 1926 A
1808550 Harpman Jun 1931 A
2024510 Crisenberry Dec 1935 A
2530991 Reeves Nov 1950 A
2536613 Schulze et al. Jan 1951 A
2699912 Cushman Jan 1955 A
2739584 Hupp Mar 1956 A
2777407 Schindler Jan 1957 A
2781038 Sherman Feb 1957 A
2791366 Geisler May 1957 A
2815018 Collins Dec 1957 A
2828608 Cowlin et al. Apr 1958 A
2847932 More Aug 1958 A
2930194 Perkins May 1960 A
2934957 Reinhart et al. May 1960 A
D191085 Kind et al. Aug 1961 S
3017924 Jenson Jan 1962 A
3051813 Busch et al. Aug 1962 A
3065342 Worden Nov 1962 A
3089407 Kinkle May 1963 A
3259120 Keating Jul 1966 A
3386431 Branson Jun 1968 A
3463138 Lotter et al. Aug 1969 A
3489135 Astrella Jan 1970 A
3548154 Christiansson Dec 1970 A
3602131 Dadson Aug 1971 A
3645249 Henderson et al. Feb 1972 A
3691937 Meek et al. Sep 1972 A
3731035 Jarvis et al. May 1973 A
3777985 Hughes et al. Dec 1973 A
3780954 Genbauffs Dec 1973 A
3857254 Lobel Dec 1974 A
3877865 Duperow Apr 1975 A
3899655 Skinner Aug 1975 A
D245663 Gordon Sep 1977 S
4104952 Brass Aug 1978 A
4149518 Schmidt et al. Apr 1979 A
4363956 Scheidler et al. Dec 1982 A
4413610 Berlik Nov 1983 A
4418456 Riehl Dec 1983 A
4447711 Fischer May 1984 A
4466789 Riehl Aug 1984 A
4518346 Pistien May 1985 A
4587946 Doyon et al. May 1986 A
4646963 Delotto et al. Mar 1987 A
4654508 Logel et al. Mar 1987 A
4689961 Stratton Sep 1987 A
4796600 Hurley Jan 1989 A
4812624 Kern Mar 1989 A
4818824 Dixit et al. Apr 1989 A
4846671 Kwiatek Jul 1989 A
4886043 Homer Dec 1989 A
4891936 Shekleton et al. Jan 1990 A
D309398 Lund Jul 1990 S
4981416 Nevin et al. Jan 1991 A
4989404 Shekleton Feb 1991 A
5021762 Hetrick Jun 1991 A
5107821 von Blanquet Apr 1992 A
5136277 Civanelli et al. Aug 1992 A
5171951 Chartrain et al. Dec 1992 A
D332385 Adams Jan 1993 S
5190026 Doty Mar 1993 A
5215074 Wilson et al. Jun 1993 A
5243172 Hazan et al. Sep 1993 A
D340383 Addison et al. Oct 1993 S
5272317 Ryu Dec 1993 A
D342865 Addison et al. Jan 1994 S
5316423 Kin May 1994 A
5397234 Kwiatek Mar 1995 A
5448036 Husslein et al. Sep 1995 A
D364993 Andrea Dec 1995 S
5491423 Turetta Feb 1996 A
D369517 Ferlin May 1996 S
5546927 Lancelot Aug 1996 A
5571434 Cavener et al. Nov 1996 A
D378578 Eberhardt Mar 1997 S
5618458 Thomas Apr 1997 A
5640497 Shute Jun 1997 A
5649822 Gertler et al. Jul 1997 A
5735261 Kieslinger Apr 1998 A
5785047 Bird et al. Jul 1998 A
5842849 Huang Dec 1998 A
5913675 Vago et al. Jun 1999 A
5918589 Valle Jul 1999 A
5928540 Antoine et al. Jul 1999 A
D414377 Huang Sep 1999 S
5967021 Yung Oct 1999 A
6016096 Barnes et al. Jan 2000 A
6030207 Saleri Feb 2000 A
6049267 Barnes et al. Apr 2000 A
6050176 Schultheis et al. Apr 2000 A
6078243 Barnes et al. Jun 2000 A
6089219 Kodera et al. Jul 2000 A
6092518 Dane Jul 2000 A
6111229 Schultheis Aug 2000 A
6114665 Garcia et al. Sep 2000 A
6133816 Barnes et al. Oct 2000 A
6155820 Döbbeling Dec 2000 A
6188045 Hansen et al. Feb 2001 B1
6192669 Keller et al. Feb 2001 B1
6196113 Yung Mar 2001 B1
6253759 Giebel et al. Jul 2001 B1
6253761 Shuler et al. Jul 2001 B1
6320169 Clothier Nov 2001 B1
6322354 Carbone et al. Nov 2001 B1
6362458 Sargunam et al. Mar 2002 B1
6452136 Berkcan et al. Sep 2002 B1
6452141 Shon Sep 2002 B1
6589046 Harneit Jul 2003 B2
6614006 Pastore et al. Sep 2003 B2
6619280 Zhou et al. Sep 2003 B1
6655954 Dane Dec 2003 B2
6663009 Bedetti et al. Dec 2003 B1
6718965 Rummel et al. Apr 2004 B2
6733146 Vastano May 2004 B1
6806444 Lerner Oct 2004 B2
6837151 Chen Jan 2005 B2
6891133 Shozo et al. May 2005 B2
6910342 Berns et al. Jun 2005 B2
6930287 Gerola et al. Aug 2005 B2
6953915 Garris, III Oct 2005 B2
7005614 Lee Feb 2006 B2
7017572 Cadima Mar 2006 B2
D524105 Poltronieri Jul 2006 S
7083123 Molla Aug 2006 B2
7220945 Wang May 2007 B1
D544753 Tseng Jun 2007 S
7274008 Arnal Valero et al. Sep 2007 B2
7281715 Boswell Oct 2007 B2
7291009 Kamal et al. Nov 2007 B2
7315247 Jung et al. Jan 2008 B2
7325480 Grühbaum et al. Feb 2008 B2
D564296 Koch et al. Mar 2008 S
7348520 Wang Mar 2008 B2
7368685 Nam et al. May 2008 B2
7411160 Duncan et al. Aug 2008 B2
7414203 Winkler Aug 2008 B2
7417204 Nam et al. Aug 2008 B2
7429021 Sather et al. Sep 2008 B2
D581736 Besseas Dec 2008 S
7468496 Marchand Dec 2008 B2
D592445 Sorenson et al. May 2009 S
7527495 Yam et al. May 2009 B2
D598959 Kiddoo Aug 2009 S
7589299 Fisher et al. Sep 2009 B2
D604098 Hamlin Nov 2009 S
7614877 McCrorey et al. Nov 2009 B2
7628609 Pryor et al. Dec 2009 B2
7640930 Little et al. Jan 2010 B2
7696454 Nam et al. Apr 2010 B2
7708008 Elkasevic et al. May 2010 B2
7721727 Kobayashi May 2010 B2
7731493 Starnini et al. Jun 2010 B2
7762250 Elkasevic Jul 2010 B2
7770985 Davis et al. Aug 2010 B2
7781702 Nam et al. Aug 2010 B2
7823502 Hecker et al. Nov 2010 B2
7829825 Kühne Nov 2010 B2
7840740 Minoo Nov 2010 B2
7841333 Kobayashi Nov 2010 B2
7964823 Armstrong et al. Jun 2011 B2
D642675 Scribano et al. Aug 2011 S
8006687 Watkins et al. Aug 2011 B2
8015821 Spytek Sep 2011 B2
8037689 Oskin et al. Oct 2011 B2
8057223 Pryor et al. Nov 2011 B2
8141549 Armstrong et al. Mar 2012 B2
8217314 Kim et al. Jul 2012 B2
8220450 Luo et al. Jul 2012 B2
8222578 Beier Jul 2012 B2
D665491 Goel et al. Aug 2012 S
8272321 Kalsi et al. Sep 2012 B1
8288690 Boubeddi et al. Oct 2012 B2
8302593 Cadima Nov 2012 B2
8304695 Bonuso et al. Nov 2012 B2
8342165 Watkins Jan 2013 B2
8344292 Franca et al. Jan 2013 B2
8356367 Flynn Jan 2013 B2
8393317 Sorenson et al. Mar 2013 B2
8398303 Kuhn Mar 2013 B2
8430310 Ho et al. Apr 2013 B1
8464703 Ryu et al. Jun 2013 B2
D685225 Santoyo et al. Jul 2013 S
D687675 Filho et al. Aug 2013 S
8526935 Besore et al. Sep 2013 B2
8528537 Chilton Sep 2013 B2
8535052 Cadima Sep 2013 B2
D693175 Saubert Nov 2013 S
8584663 Kim et al. Nov 2013 B2
8596259 Padgett et al. Dec 2013 B2
8616193 Padgett Dec 2013 B2
8660297 Yoon et al. Feb 2014 B2
8687842 Yoon et al. Apr 2014 B2
8689782 Padgett Apr 2014 B2
8707945 Hasslberger et al. Apr 2014 B2
8747108 Lona Santoyo et al. Jun 2014 B2
8800543 Simms et al. Aug 2014 B2
D718061 Wu Nov 2014 S
8887710 Rossi et al. Nov 2014 B2
8930160 Wall et al. Jan 2015 B2
8932049 Ryu et al. Jan 2015 B2
8950389 Horstkoetter et al. Feb 2015 B2
8978637 Ryu et al. Mar 2015 B2
D727489 Rohskopf et al. Apr 2015 S
9021942 Lee et al. May 2015 B2
9074765 Armanni Jul 2015 B2
D735525 Nguyen Aug 2015 S
9113503 Arnal Valero et al. Aug 2015 B2
9132302 Luongo et al. Sep 2015 B2
D743203 Filho et al. Nov 2015 S
9175858 Tisselli et al. Nov 2015 B2
D750314 Hobson et al. Feb 2016 S
9307888 Baldwin et al. Apr 2016 B2
D758107 Hamilton Jun 2016 S
9400115 Kuwamura Jul 2016 B2
D766036 Koch et al. Sep 2016 S
D766696 Kemker Sep 2016 S
9513015 Estrella et al. Dec 2016 B2
9521708 Adelmann et al. Dec 2016 B2
9557063 Cadima Jan 2017 B2
9572475 Gephart et al. Feb 2017 B2
9644847 Bhogal et al. May 2017 B2
9696042 Hasslberger Jul 2017 B2
9879864 Gutierrez et al. Jan 2018 B2
9927129 Bhogal et al. Mar 2018 B2
20020065039 Benezech et al. May 2002 A1
20040007566 Staebler et al. Jan 2004 A1
20040031782 Westfield Feb 2004 A1
20040195399 Molla Oct 2004 A1
20040224273 Inomata Nov 2004 A1
20040224274 Tomiura Nov 2004 A1
20050029245 Gerola et al. Feb 2005 A1
20050112520 Todoli et al. May 2005 A1
20050199232 Gama et al. Sep 2005 A1
20050268000 Carlson Dec 2005 A1
20050268794 Nesterov Dec 2005 A1
20060237425 Kim Oct 2006 A1
20070124972 Ratcliffe Jun 2007 A1
20070181410 Baier Aug 2007 A1
20070251936 Nam et al. Nov 2007 A1
20070281267 Li Dec 2007 A1
20080029081 Gagas Feb 2008 A1
20080050687 Wu Feb 2008 A1
20080173632 Jang et al. Jul 2008 A1
20080210685 Beier Sep 2008 A1
20090032010 Hoffmeier Feb 2009 A1
20090173730 Baier et al. Jul 2009 A1
20090320823 Padgett Dec 2009 A1
20100035197 Cadima Feb 2010 A1
20100114339 Kaiser et al. May 2010 A1
20100126496 Luo et al. May 2010 A1
20100154776 Czajka et al. Jun 2010 A1
20100192939 Parks Aug 2010 A1
20110027733 Yamamoto et al. Feb 2011 A1
20110142998 Johncock et al. Jun 2011 A1
20110163086 Aldana Arjol et al. Jul 2011 A1
20110248021 Gutierrez et al. Oct 2011 A1
20120017595 Liu Jan 2012 A1
20120024835 Artal Lahoz et al. Feb 2012 A1
20120036855 Hull Feb 2012 A1
20120037142 Chilton Feb 2012 A1
20120067334 Kim et al. Mar 2012 A1
20120076351 Yoon et al. Mar 2012 A1
20120099761 Yoon et al. Apr 2012 A1
20120160228 Kim et al. Jun 2012 A1
20120171343 Cadima et al. Jul 2012 A1
20120261405 Kurose et al. Oct 2012 A1
20130043239 Anton Falcon et al. Feb 2013 A1
20130252188 Chen Sep 2013 A1
20130255663 Cadima et al. Oct 2013 A1
20130260618 Bally et al. Oct 2013 A1
20130333684 Cescot Dec 2013 A1
20140048055 Ruther Feb 2014 A1
20140071019 Lim Mar 2014 A1
20140090636 Bettinzoli Apr 2014 A1
20140097172 Kang et al. Apr 2014 A1
20140116416 Saubert May 2014 A1
20140137751 Bellm May 2014 A1
20140139381 Sippel May 2014 A1
20140318527 Silva et al. Oct 2014 A1
20140352549 Upston et al. Dec 2014 A1
20150096974 Freeman et al. Apr 2015 A1
20150136760 Lima et al. May 2015 A1
20150153041 Neumeier Jun 2015 A1
20150241069 Brant et al. Aug 2015 A1
20150330640 Stork genannt Wersborg Nov 2015 A1
20150345800 Cabrera Botello Dec 2015 A1
20150359045 Neukamm et al. Dec 2015 A1
20160029439 Kurose et al. Jan 2016 A1
20160061490 Cho et al. Mar 2016 A1
20160091210 Ceccoli Mar 2016 A1
20160095469 Gregory et al. Apr 2016 A1
20160116160 Takeuchi Apr 2016 A1
20160153666 Tcaciuc Jun 2016 A1
20160174768 Deverse Jun 2016 A1
20160178209 Park et al. Jun 2016 A1
20160178212 Park et al. Jun 2016 A1
20160187002 Ryu et al. Jun 2016 A1
20160201902 Cadima Jul 2016 A1
20160209044 Cadima Jul 2016 A1
20160209045 Millius Jul 2016 A1
20160295644 Khokle et al. Oct 2016 A1
20160296067 Laws Oct 2016 A1
20170003033 Lona Santoyo et al. Jan 2017 A1
20170067651 Khokle et al. Mar 2017 A1
20170074522 Cheng Mar 2017 A1
20170082296 Jeong et al. Mar 2017 A1
20170082299 Rowley et al. Mar 2017 A1
20170108228 Park et al. Apr 2017 A1
20170115008 Erbe et al. Apr 2017 A1
20170261213 Park et al. Apr 2017 A1
20170223774 Cheng et al. Aug 2017 A1
20180058702 Jang et al. Mar 2018 A1
20190145627 Johnson May 2019 A1
Foreign Referenced Citations (75)
Number Date Country
2365023 Jul 2002 CA
2734926 Oct 2011 CA
201680430 Dec 2010 CN
7242625 Mar 1973 DE
2845869 Apr 1980 DE
3014908 Oct 1981 DE
3238441 Apr 1984 DE
3446621 Jun 1986 DE
3717728 Dec 1988 DE
3150450 Aug 1989 DE
3839657 May 1990 DE
4103664 Jan 1992 DE
4228076 May 1993 DE
4445594 Jun 1996 DE
10218294 Nov 2003 DE
60004581 Jun 2004 DE
102004002466 Aug 2005 DE
1020040009606 Sep 2005 DE
102005059505 Jun 2007 DE
19912452 Oct 2007 DE
102006034391 Jan 2008 DE
102007021297 Nov 2008 DE
102008027220 Dec 2009 DE
102008042467 Apr 2010 DE
102008051829 Apr 2010 DE
102009002276 Oct 2010 DE
102013218714 Apr 2014 DE
0000908 Mar 1979 EP
0122966 Oct 1984 EP
0429120 May 1991 EP
0620698 Oct 1994 EP
0690659 Jan 1996 EP
1030114 Aug 2000 EP
1217306 Jun 2002 EP
1344986 Sep 2003 EP
1586822 Oct 2005 EP
1617148 Jan 2006 EP
1099905 Feb 2006 EP
1201998 Mar 2006 EP
1460342 May 2006 EP
2063181 May 2009 EP
2063444 May 2009 EP
2070442 Jun 2009 EP
2116775 Nov 2009 EP
2116829 Nov 2009 EP
2278227 Jan 2011 EP
2299181 Mar 2011 EP
2375170 Oct 2011 EP
2144012 Sep 2012 EP
2657615 Oct 2013 EP
2816291 Dec 2014 EP
2835580 Feb 2015 EP
3006832 Apr 2016 EP
2848867 Sep 2017 EP
2712071 May 1995 FR
2787556 Jun 2000 FR
2789753 Aug 2000 FR
3003338 Sep 2014 FR
2158225 Nov 1985 GB
2001141244 May 2001 JP
2005009693 Jan 2005 JP
2007147131 Jun 2007 JP
2010038475 Feb 2010 JP
2011144982 Jul 2011 JP
2011257021 Dec 2011 JP
1991013526 Sep 1991 WO
9850736 Nov 1998 WO
2006072388 Jul 2006 WO
2006136363 Dec 2006 WO
2012077050 Jun 2012 WO
2013098330 Jul 2013 WO
2013104521 Jul 2013 WO
2013182410 Dec 2013 WO
2014194176 Dec 2014 WO
2015086420 Jun 2015 WO
Non-Patent Literature Citations (4)
Entry
Built-In Gas Cooktop, image post date Feb. 18, 2015, originally cited by Examiner in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 10 pages, <http://www.bestbuy.com/site/kitchenaid-36-built-in-gas-cooktop-stainless-steel/8636634.p?skuId=8636634>.
True-Heat burner, image post date Jan. 30, 2015, originally cited by Examiner in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 2 pages, <http://ovens.reviewed.com/news/kitchenaid-has-a-new-flame>.
Metal Cover Gas Hob, image post date 2012, originally cited by Examiner in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 13 pages, <http://inse.gmc.globalmarket.com/products/details/metal-cover-gas-hob-8516959.html>.
Penny Stove, image post date 2004, originally cited by Examiner in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 30 pages, <http://www.jureystudio.com/pennystove/stoveinstruction.html>.
Related Publications (1)
Number Date Country
20200003427 A1 Jan 2020 US