The device is in the field of cooking appliances, and more specifically, a ventilation system of a cooking appliance that incorporates one or more ventilation towers towards a front of the cooking appliance.
In at least one aspect, a cooking appliance includes a housing having a sidewall and a front panel, wherein a heating cavity is defined within the housing. An operable door panel is rotationally coupled proximate the front panel and operable to provide selective access to the heating cavity via an aperture defined within the front panel. A heat source is in thermal communication with the heating cavity and the front panel. A blower is disposed within an interstitial space at least partially defined by an outer surface of the housing. A ventilation tower is attached to the sidewall and positioned proximate the front panel. Selective operation of the blower draws ventilation air from an external region proximate the front panel and into the interstitial space via the ventilation tower.
In at least another aspect, a heating and ventilation system for a cooking appliance includes a heat source that selectively delivers heat to a heating cavity defined within a housing. An outer ventilation path extends around at least a portion of an exterior of the housing. A ventilation tower is disposed proximate a sidewall of the housing and in communication with the outer ventilation path. A blower is disposed within the outer ventilation path and is selectively operable to move ventilation air from the ventilation tower and into the outer ventilation path. The ventilation tower includes a side vent that cooperates with the blower to direct cooling air from areas external to the outer ventilation path into the ventilation tower to at least partially define the ventilation air.
In at least another aspect, a heating appliance includes an upper housing including an upper heat source that delivers heat to an upper heating cavity defined within the upper housing. A lower housing includes a lower heat source that delivers heat to a lower heating cavity defined with in the lower housing. A heating and ventilation system includes an outer ventilation path extending around an outer surface of each of the upper and lower housings. Upper and lower ventilation towers are disposed at sidewalls of the upper and lower housings, respectively. Each of the upper and lower ventilation towers are in communication with the outer ventilation path. At least one blower is disposed within the outer ventilation path and is selectively operable to move ventilation air from at least one of the upper and lower ventilation towers and into the outer ventilation path. Each ventilation tower of the upper and lower ventilation towers includes a side vent that cooperates with the at least one blower to direct cooling air from areas external to the outer ventilation path and the upper and lower housings and into the outer ventilation path to partially define the ventilation air.
These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in
As exemplified in
According to various aspects of the device, as exemplified in
Referring again to
During operation of the blower 36, as exemplified in
During operation of the heat source 34, heat 76 from the heating cavity 22 may infiltrate through the sidewalls 18 and into these interstitial spaces 38. If this heated air 74 within the interstitial spaces 38 is recirculated, the interstitial space 38 may experience an undesirable high temperature that could damage the appliance 14 as well as the cabinet structure 50 surrounding the cooking appliance 14. By positioning the ventilation towers 10 proximate the front panel 20, the blower 36 can create the negative pressure area 70 within and in front of the ventilation towers 10 to draw the cooling air 62 through the side vent 60, into the ventilation tower 10, and toward the blower 36 for delivery throughout the various interstitial spaces 38 of the cooking appliance 14 within the cabinet structure 50. This movement of the cooling air 62 through the interstitial space 38 serves to cool, at least, the cabinet structure 50 surrounding the housing 16
Referring again to
Referring again to
Referring again to
Referring again to
In various aspects of the device, the interstitial space 38 that surrounds at least a portion of the housing 16 for the cooking appliance 14 can include a superior area 100 that is typically positioned above the housing 16. Operation of the blower 36 serves to move the ventilation air 42 from this superior area 100 above the housing 16 to an anterior area 102 typically located behind the housing 16. Operation of the blower 36 moves the ventilation air 42, which typically includes some cooling air 62 obtained through the ventilation tower 10, and moves this combined ventilation air 42 and cooling air 62 sequentially through the superior area 100 and anterior area 102 to a ventilation outlet 104 of the air handling system 12.
According to various aspects of the device, the ventilation outlet 104 can be positioned within the front panel 20 at a lower portion 110 of the front panel 20. Accordingly, the ventilation air 42 that is moved through the ventilation outlet 104 is pushed through a lower portion 110 of the front panel 20 and is projected in an outward direction 112 that is generally perpendicular to the front panel 20. During operation of the blower 36, cooling air 62 is drawn or suctioned into the ventilation tower 10 through the side vent 60, because the side vent 60 is oriented substantially parallel with the front panel 20, cooling air 62 is drawn in from areas in front of and toward the sides of the front panel 20 in an inward direction 114 that is generally perpendicular to the outward direction 112. This configuration of the side vent 60 and the ventilation outlet 104 as being oriented in generally perpendicular directions to one another can serve to prevent the negative pressure area 70 within the ventilation tower 10 from drawing in the ejected ventilation air 42 that has left the ventilation outlet 104. This helps to ensure that the cooling air 62 obtained within the ventilation tower 10 through the side vent 60 is at or near room temperature.
Referring again to
The blower 36 for the heating and ventilation system is typically disposed within the outer ventilation path 116 and is selectively operable to move ventilation air 42 from the ventilation tower 10 and into other areas of the outer ventilation path 116. The ventilation tower 10 includes the side vent 60 that cooperates with the blower 36 to create the negative pressure area 70 that generates the suction 72 for drawing in cooling air 62 from the surrounding environment and to the side vent 60 and into the ventilation tower 10. This negative pressure area 70 causes the suction 72 that draws cooling air 62 from areas around and in front of the cooking appliance 14 for adding to the ventilation air 42 to be maintained or substantially maintained within desired temperatures. The cooling air 62 obtained through the ventilation tower 10 via the side vent 60 moves through the interstitial space 38 to at least partially cool the ventilation air 42 that is contemporaneously moved through the outer ventilation path 116.
As discussed previously, and as exemplified in
The operable door panel 30 is coupled to the housing 16 proximate the front panel 20 of the housing 16. The operable door panel 30 provides selective access to the heating cavity 22 via the aperture 32 defined within the front panel 20. According to various aspects of the device, the operable door panel 30 can be a rotationally operable door, a sliding panel, a vertically or horizontally translating door that is connected by a linkage mechanism with the housing 16, and other similar door panel 30 types. The handle 64 is typically attached to the operable door panel 30 and the ventilation tower 10 is positioned adjacent to the front panel 20 and proximate the handle 64 of the operable door panel 30 when the operable door panel 30 is in a closed position 130. Movement of the cooling air 62 through the side vent 60 to define at least a portion of the ventilation air 42 that is moved through the outer ventilation path 116 at least partially limits thermal communication between the heat source 34 and the handle 64. In this manner, heat 76 can be directed away from the handle 64 to prevent the handle 64 from achieving the unnecessarily high temperature that may be undesirable to users of the appliance 14.
Referring again to
Referring again to
Referring again to
In various aspects of the device, the inner and outer panels 80, 82 can be stamped members that can be connected together to define the ventilation tower 10 for incorporation within the heating and ventilation system of the appliance 14. In such an embodiment, the inner panel 80 can be attached or otherwise connected to a side panel 160 of the housing 16. The outer panel 82 can then attach to the inner panel 80. The front opening 150 defined between the inner and outer panels 80, 82 serves to receive the suctioned cooling air 62 through the side vent 60 and allows for this cooling air 62 to be suctioned into the air channel 84 defined within the ventilation tower 10. The inner and outer panels 80, 82 can be connected via various connecting methods and mechanisms that can include, but are not limited to, welding, fasteners, adhesives, mating engagements, combinations thereof, and other similar connecting methods and mechanisms.
Referring again to
Upper and lower ventilation towers 180, 182 can be disposed at or proximate sidewalls 18 of the upper and lower housings 52, 54, respectively. In this manner, each of the upper and lower housings 52, 54 include a dedicated side vent 60 that draws cooling air 62 into the upper and lower ventilation towers 180, 182, respectively, and into the outer ventilation path 116 for the appliance 14. The outer ventilation path 116 for the appliance 14 can extend above the upper housing 52, between the upper and lower housings 52, 54, behind one or both of the upper and lower housings 52, 54 and to one or more dedicated ventilation outlets 104. Where one ventilation outlet 104 is included, that ventilation outlet 104 is typically positioned below each of the upper and lower housings 52, 54.
At least one blower 36 is disposed within the outer ventilation path 116. Operation of this blower 36 is selectively operable to move ventilation air 42 from at least one of the upper and lower ventilation towers 180, 182 and into the outer ventilation path 116. As discussed previously, each ventilation tower 10 of the upper and lower ventilation towers 180, 182 includes a side aperture 32 that cooperates with the blower 36 to direct cooling air 62 from areas external to the outer ventilation path 116 and in front of the appliance 14. This cooling air 62 is moved through the respective side vent 60 and into the respective upper and lower ventilation towers 180, 182. The cooling air 62 is then moved into the outer ventilation path 116 via the upper and lower ventilation towers 180, 182 to at least partially define the ventilation air 42 that is moved through the outer ventilation path 116.
In various aspects of the device, the appliance 14 can include upper and lower blowers 190, 192 that can operate selectively and independently with respect to one another. In such an embodiment, an upper blower 190 typically operates with an upper ventilation tower 180 and a lower blower 192 cooperates with a lower ventilation tower 182. Additionally, where separate blowers 36 are included, each housing 16 may include its own dedicated outer ventilation path 116 and dedicated ventilation outlet 104. Alternatively, and as discussed above, a single blower 36 may be used to move ventilation air 42 through a single outer ventilation path 116 and to also generate the negative pressure areas 70 within and around the ventilation towers 10 for drawing cooling air 62 through the side apertures 32 and into the air channel 84 for each of the upper and lower ventilation towers 180, 182.
Referring again to
In various aspects of the device, as exemplified in
According to various aspects of the device, the side ventilation towers 10 can be utilized within various heating-type appliances 14. These appliances 14 can include, but are not limited to, ovens, water heaters, dishwashers, laundry-type appliances, refrigerators, freezers, various small appliances, and other similar appliances and fixtures located within commercial and residential settings.
In various aspects of the device, the sidewalls 18 of the appliance 14 can be modified to incorporate various aspects of the ventilation tower 10. The inner panel 80 of the ventilation tower 10 can be seated within a side panel 160 for the housing 16. It is also contemplated that the inner panel 80 for the ventilation tower 10 can be incorporated within, or integrally formed as part of, this side panel 160. In such an embodiment, the outer panel 82 for the ventilation tower 10 can be attached to the side panel 160 to form the air channel 84, front opening 150 and top aperture 86 for moving cooling air 62 from the side vent 60 and into the interstitial space 38. A top panel 210 for the housing 16 can also be modified to allow for incorporation of the ventilation tower 10 therein. A cutout 212 can be provided in the top panel 210 to allow for attachment of the inner panel 80 of the ventilation tower 10. Accordingly, the side panel 160 and top panel 210 of the housing 16 can be used to at least partially define the air channel 84 that moves the cooling air 62 from the side vent 60, through the air channel 84, and into the interstitial space 38 that forms at least a portion of the outer ventilation path 116. The side panel 160, top panel 210, and inner and outer panels 80, 82 of the ventilation tower 10 can be used to at least partially seal off areas of the air channel 84 to allow for formation of the negative pressure area 70 that suctions 72 or draws cooling air 62 in through the side vents 60 and through the air channel 84 for delivery to the outer ventilation path 116.
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
The present application is a continuation of U.S. patent application Ser. No. 16/021,730 filed Jun. 28, 2018, entitled FRONTAL COOLING TOWERS FOR A VENTILATION SYSTEM OF A COOKING APPLIANCE, the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1141176 | Copeman | Jun 1915 | A |
1380656 | Lauth | Jun 1921 | A |
1405624 | Patterson | Feb 1922 | A |
1598996 | Wheelock | Sep 1926 | A |
1808550 | Harpman | Jun 1931 | A |
2024510 | Crisenberry | Dec 1935 | A |
2530991 | Reeves | Nov 1950 | A |
2536613 | Schulze et al. | Jan 1951 | A |
2699912 | Cushman | Jan 1955 | A |
2739584 | Hupp | Mar 1956 | A |
2777407 | Schindler | Jan 1957 | A |
2781038 | Sherman | Feb 1957 | A |
2791366 | Geisler | May 1957 | A |
2815018 | Collins | Dec 1957 | A |
2828608 | Cowlin et al. | Apr 1958 | A |
2847932 | More | Aug 1958 | A |
2930194 | Perkins | May 1960 | A |
2934957 | Reinhart et al. | May 1960 | A |
D191085 | Kindl et al. | Aug 1961 | S |
3017924 | Jenson | Jan 1962 | A |
3051813 | Busch et al. | Aug 1962 | A |
3065342 | Inorden | Nov 1962 | A |
3089407 | Kinkle | May 1963 | A |
3259120 | Keating | Jul 1966 | A |
3386431 | Branson | Jun 1968 | A |
3463138 | Lotter et al. | Aug 1969 | A |
3489135 | Astrella | Jan 1970 | A |
3548154 | Christiansson | Dec 1970 | A |
3602131 | Dadson | Aug 1971 | A |
3645249 | Henderson et al. | Feb 1972 | A |
3691937 | Meek et al. | Sep 1972 | A |
3731035 | Jarvis et al. | May 1973 | A |
3777985 | Hughes et al. | Dec 1973 | A |
3780954 | Genbauffs | Dec 1973 | A |
3857254 | Lobel | Dec 1974 | A |
3877865 | Duperow | Apr 1975 | A |
3899655 | Skinner | Aug 1975 | A |
D245663 | Gordon | Sep 1977 | S |
4104952 | Brass | Aug 1978 | A |
4149518 | Schmidt et al. | Apr 1979 | A |
4363956 | Scheidler et al. | Dec 1982 | A |
4413610 | Berlik | Nov 1983 | A |
4418456 | Riehl | Dec 1983 | A |
4447711 | Fischer | May 1984 | A |
4466789 | Riehl | Aug 1984 | A |
4518346 | Pistien | May 1985 | A |
4587946 | Doyon et al. | May 1986 | A |
4646963 | Delotto et al. | Mar 1987 | A |
4654508 | Logel | Mar 1987 | A |
4689961 | Stratton | Sep 1987 | A |
4796600 | Hurley et al. | Jan 1989 | A |
4812624 | Kern | Mar 1989 | A |
4818824 | Dixit et al. | Apr 1989 | A |
4846671 | Kwiatek | Jul 1989 | A |
4886043 | Homer | Dec 1989 | A |
4891936 | Shekleton et al. | Jan 1990 | A |
D309398 | Lund | Jul 1990 | S |
4981416 | Nevin et al. | Jan 1991 | A |
4989404 | Shekleton | Feb 1991 | A |
5021762 | Hetrick | Jun 1991 | A |
5107821 | Von Blanquet | Apr 1992 | A |
5136277 | Civanelli et al. | Aug 1992 | A |
5171951 | Chartrain et al. | Dec 1992 | A |
D332385 | Adams | Jan 1993 | S |
5190026 | Doty | Mar 1993 | A |
5215074 | Wilson et al. | Jun 1993 | A |
5243172 | Hazan et al. | Sep 1993 | A |
D340383 | Addison et al. | Oct 1993 | S |
5272317 | Ryu | Dec 1993 | A |
D342865 | Addison et al. | Jan 1994 | S |
5316423 | Kin | May 1994 | A |
5397234 | Kwiatek | Mar 1995 | A |
5448036 | Husslein et al. | Sep 1995 | A |
D364993 | Andrea | Dec 1995 | S |
5491423 | Turetta | Feb 1996 | A |
D369517 | Ferlin | May 1996 | S |
5546927 | Lancelot | Aug 1996 | A |
5571434 | Cavener et al. | Nov 1996 | A |
D378578 | Eberhardt | Mar 1997 | S |
5618458 | Thomas | Apr 1997 | A |
5640497 | Shute | Jun 1997 | A |
5649822 | Gertler et al. | Jul 1997 | A |
5735261 | Kieslinger | Apr 1998 | A |
5785047 | Bird et al. | Jul 1998 | A |
5842849 | Huang | Dec 1998 | A |
5913675 | Vago et al. | Jun 1999 | A |
5918589 | Valle | Jul 1999 | A |
5928540 | Antoine et al. | Jul 1999 | A |
D414377 | Huang | Sep 1999 | S |
5967021 | Yung | Oct 1999 | A |
6016096 | Barnes et al. | Jan 2000 | A |
6030207 | Salmi | Feb 2000 | A |
6049267 | Barnes et al. | Apr 2000 | A |
6050176 | Schultheis et al. | Apr 2000 | A |
6078243 | Barnes et al. | Jun 2000 | A |
6089219 | Kodera et al. | Jul 2000 | A |
6092518 | Dane | Jul 2000 | A |
6111229 | Schultheis | Aug 2000 | A |
6114665 | Garcia et al. | Sep 2000 | A |
6133816 | Barnes et al. | Oct 2000 | A |
6155820 | Dobbeling | Dec 2000 | A |
6172338 | Barnes | Jan 2001 | B1 |
6188045 | Hansen et al. | Feb 2001 | B1 |
6192669 | Keller et al. | Feb 2001 | B1 |
6196113 | Yung | Mar 2001 | B1 |
6253759 | Giebel et al. | Jul 2001 | B1 |
6253761 | Shuler et al. | Jul 2001 | B1 |
6320169 | Clothier | Nov 2001 | B1 |
6322354 | Carbone et al. | Nov 2001 | B1 |
6362458 | Sargunam et al. | Mar 2002 | B1 |
6452136 | Berkcan et al. | Sep 2002 | B1 |
6452141 | Shon | Sep 2002 | B1 |
6589046 | Harneit | Jul 2003 | B2 |
6614006 | Pastore et al. | Sep 2003 | B2 |
6619280 | Zhou et al. | Sep 2003 | B1 |
6655954 | Dane | Dec 2003 | B2 |
6663009 | Bedetti et al. | Dec 2003 | B1 |
6718965 | Rummel et al. | Apr 2004 | B2 |
6733146 | Vastano | May 2004 | B1 |
6761159 | Barnes | Jul 2004 | B1 |
6806444 | Lemer | Oct 2004 | B2 |
6837151 | Chen | Jan 2005 | B2 |
6891133 | Shozo et al. | May 2005 | B2 |
6910342 | Bems et al. | Jun 2005 | B2 |
6930287 | Gerola et al. | Aug 2005 | B2 |
6953915 | Garris, III | Oct 2005 | B2 |
7005614 | Lee | Feb 2006 | B2 |
7017572 | Cadima | Mar 2006 | B2 |
D524105 | Poltronieri | Jul 2006 | S |
7083123 | Molla | Aug 2006 | B2 |
7220945 | Wang | May 2007 | B1 |
D544753 | Tseng | Jun 2007 | S |
7274008 | Arnal Valero et al. | Sep 2007 | B2 |
7281715 | Boswell | Oct 2007 | B2 |
7291009 | Kamal et al. | Nov 2007 | B2 |
7315247 | Jung et al. | Jan 2008 | B2 |
7325480 | Gruhbaum et al. | Feb 2008 | B2 |
D564296 | Koch et al. | Mar 2008 | S |
7348520 | Wang | Mar 2008 | B2 |
7368685 | Nam et al. | May 2008 | B2 |
7411160 | Duncan et al. | Aug 2008 | B2 |
7414203 | Winkler | Aug 2008 | B2 |
7417204 | Nam et al. | Aug 2008 | B2 |
7429021 | Sather et al. | Sep 2008 | B2 |
D581736 | Besseas | Dec 2008 | S |
7468496 | Marchand | Dec 2008 | B2 |
D592445 | Sorenson et al. | May 2009 | S |
7527495 | Yam et al. | May 2009 | B2 |
D598959 | Kiddoo | Aug 2009 | S |
7589299 | Fisher et al. | Sep 2009 | B2 |
D604098 | Hamlin | Nov 2009 | S |
7614877 | McCrorey et al. | Nov 2009 | B2 |
7628609 | Pryor et al. | Dec 2009 | B2 |
7640930 | Little et al. | Jan 2010 | B2 |
7696454 | Nam et al. | Apr 2010 | B2 |
7721727 | Kobayashi | May 2010 | B2 |
7731493 | Starnini et al. | Jun 2010 | B2 |
7770985 | Davis et al. | Aug 2010 | B2 |
7781702 | Nam et al. | Aug 2010 | B2 |
7823502 | Hecker et al. | Nov 2010 | B2 |
7829825 | Kühne | Nov 2010 | B2 |
7840740 | Minoo | Nov 2010 | B2 |
7841333 | Kobayashi | Nov 2010 | B2 |
D642675 | Scribano et al. | Aug 2011 | S |
8015821 | Spytek | Sep 2011 | B2 |
8037689 | Dskin et al. | Oct 2011 | B2 |
8057223 | Pryor et al. | Nov 2011 | B2 |
8217314 | Kim et al. | Jul 2012 | B2 |
8220450 | Luo et al. | Jul 2012 | B2 |
8222578 | Beier | Jul 2012 | B2 |
D665491 | Goel et al. | Aug 2012 | S |
8272321 | Kalsi et al. | Sep 2012 | B1 |
8288690 | Boubeddi et al. | Oct 2012 | B2 |
8302593 | Cadima | Nov 2012 | B2 |
8304695 | Bonuso et al. | Nov 2012 | B2 |
8344292 | Franca et al. | Jan 2013 | B2 |
8356367 | Flynn | Jan 2013 | B2 |
8393317 | Sorenson et al. | Mar 2013 | B2 |
8398303 | Kuhn | Mar 2013 | B2 |
8430310 | Ho et al. | Apr 2013 | B1 |
8464703 | Ryu et al. | Jun 2013 | B2 |
D685225 | Santoyo et al. | Jul 2013 | S |
D687675 | Filho et al. | Aug 2013 | S |
8526935 | Besore et al. | Sep 2013 | B2 |
8528537 | Chilton | Sep 2013 | B2 |
8535052 | Cadima | Sep 2013 | B2 |
D693175 | Saubert | Nov 2013 | S |
8596259 | Padgett et al. | Dec 2013 | B2 |
8616193 | Padgett | Dec 2013 | B2 |
8660297 | Yoon et al. | Feb 2014 | B2 |
8687842 | Yoon et al. | Apr 2014 | B2 |
8689782 | Padgett | Apr 2014 | B2 |
8747108 | Lona Santoyo et al. | Jun 2014 | B2 |
8800543 | Simms et al. | Aug 2014 | B2 |
D718061 | Wu | Nov 2014 | S |
8887710 | Rossi et al. | Nov 2014 | B2 |
8930160 | Wall et al. | Jan 2015 | B2 |
8932049 | Ryu et al. | Jan 2015 | B2 |
8978637 | Ryu et al. | Mar 2015 | B2 |
D727489 | Rohskopf et al. | Apr 2015 | S |
9074765 | Armanni | Jul 2015 | B2 |
D735525 | Nguyen | Aug 2015 | S |
9113503 | Amal Valero et al. | Aug 2015 | B2 |
9132302 | Luongo et al. | Sep 2015 | B2 |
D743203 | Filho et al. | Nov 2015 | S |
9175858 | Tisselli et al. | Nov 2015 | B2 |
D750314 | Hobson et al. | Feb 2016 | S |
9307888 | Baldwin et al. | Apr 2016 | B2 |
D758107 | Hamilton | Jun 2016 | S |
9400115 | Kuwamura | Jul 2016 | B2 |
D766036 | Koch et al. | Sep 2016 | S |
D766696 | Kemker | Sep 2016 | S |
9521708 | Adelmann et al. | Dec 2016 | B2 |
9557063 | Cadima | Jan 2017 | B2 |
9572475 | Gephart et al. | Feb 2017 | B2 |
9644847 | Bhogal et al. | May 2017 | B2 |
9879864 | Gutierrez et al. | Jan 2018 | B2 |
9927129 | Bhogal et al. | Mar 2018 | B2 |
10260758 | Colozzo | Apr 2019 | B2 |
10371390 | Lee | Aug 2019 | B2 |
10578312 | Johnson | Mar 2020 | B2 |
10627116 | Bruin-Slot | Apr 2020 | B2 |
11009236 | Braden | May 2021 | B2 |
20020065039 | Benezech et al. | May 2002 | A1 |
20040007566 | Staebler et al. | Jan 2004 | A1 |
20040031782 | Westfield | Feb 2004 | A1 |
20040195399 | Molla | Oct 2004 | A1 |
20040224273 | Inomata | Nov 2004 | A1 |
20040224274 | Tomiura | Nov 2004 | A1 |
20050029245 | Gerola et al. | Feb 2005 | A1 |
20050112520 | Todoli et al. | May 2005 | A1 |
20050199232 | Gama et al. | Sep 2005 | A1 |
20050268000 | Carlson | Dec 2005 | A1 |
20050268794 | Nesterov | Dec 2005 | A1 |
20060237425 | Kim et al. | Oct 2006 | A1 |
20070124972 | Ratcliffe | Jun 2007 | A1 |
20070181410 | Baier | Aug 2007 | A1 |
20070251936 | Nam et al. | Nov 2007 | A1 |
20070281267 | Li | Dec 2007 | A1 |
20080029081 | Gagas | Feb 2008 | A1 |
20080050687 | Wu | Feb 2008 | A1 |
20080173632 | Jang et al. | Jul 2008 | A1 |
20080210685 | Beier | Sep 2008 | A1 |
20090032010 | Hoffmeier | Feb 2009 | A1 |
20090173730 | Baier et al. | Jul 2009 | A1 |
20090320823 | Padgett | Dec 2009 | A1 |
20100035197 | Cadima | Feb 2010 | A1 |
20100114339 | Kaiser et al. | May 2010 | A1 |
20100126496 | Luo et al. | May 2010 | A1 |
20100154776 | Czajka et al. | Jun 2010 | A1 |
20100192939 | Parks | Aug 2010 | A1 |
20110027733 | Yamamoto et al. | Feb 2011 | A1 |
20110142998 | Johncock et al. | Jun 2011 | A1 |
20110163086 | Aldana Arjol et al. | Jul 2011 | A1 |
20110248021 | Gutierrez et al. | Oct 2011 | A1 |
20120017595 | Liu | Jan 2012 | A1 |
20120024835 | Artal Lahoz et al. | Feb 2012 | A1 |
20120036855 | Hull | Feb 2012 | A1 |
20120037142 | Chilton et al. | Feb 2012 | A1 |
20120067334 | Kim et al. | Mar 2012 | A1 |
20120076351 | Yoon et al. | Mar 2012 | A1 |
20120099761 | Yoon et al. | Apr 2012 | A1 |
20120160228 | Kim et al. | Jun 2012 | A1 |
20120171343 | Cadima et al. | Jul 2012 | A1 |
20120261405 | Kurose et al. | Oct 2012 | A1 |
20130043239 | Anton Falcon et al. | Feb 2013 | A1 |
20130252188 | Chen | Sep 2013 | A1 |
20130255663 | Cadima et al. | Oct 2013 | A1 |
20130260618 | Bally et al. | Oct 2013 | A1 |
20130333684 | Cescot et al. | Dec 2013 | A1 |
20140048055 | Ruther | Feb 2014 | A1 |
20140071019 | Lim | Mar 2014 | A1 |
20140090636 | Bettinzoli | Apr 2014 | A1 |
20140097172 | Kang et al. | Apr 2014 | A1 |
20140116416 | Saubert | May 2014 | A1 |
20140137751 | Bellm | May 2014 | A1 |
20140139381 | Sippel | May 2014 | A1 |
20140318527 | Silva et al. | Oct 2014 | A1 |
20140352549 | Upston et al. | Dec 2014 | A1 |
20150096974 | Freeman et al. | Apr 2015 | A1 |
20150136760 | Lima et al. | May 2015 | A1 |
20150153041 | Neumeier | Jun 2015 | A1 |
20150330640 | Stork genannt Wersborg | Nov 2015 | A1 |
20150345800 | Cabrera Botello | Dec 2015 | A1 |
20150359045 | Neukamm et al. | Dec 2015 | A1 |
20160029439 | Kurose et al. | Jan 2016 | A1 |
20160061490 | Cho et al. | Mar 2016 | A1 |
20160091210 | Ceccoli | Mar 2016 | A1 |
20160095469 | Gregory et al. | Apr 2016 | A1 |
20160116160 | Takeuchi | Apr 2016 | A1 |
20160174768 | Deverse | Jun 2016 | A1 |
20160178209 | Park et al. | Jun 2016 | A1 |
20160178212 | Park et al. | Jun 2016 | A1 |
20160187002 | Ryu et al. | Jun 2016 | A1 |
20160201902 | Cadima | Jul 2016 | A1 |
20160209044 | Cadima | Jul 2016 | A1 |
20160209045 | Millius | Jul 2016 | A1 |
20160295644 | Khokle et al. | Oct 2016 | A1 |
20160296067 | Laws | Oct 2016 | A1 |
20170003033 | Lona Santoyo et al. | Jan 2017 | A1 |
20170067651 | Khokle et al. | Mar 2017 | A1 |
20170074522 | Cheng | Mar 2017 | A1 |
20170108228 | Park et al. | Apr 2017 | A1 |
20170115008 | Erbe et al. | Apr 2017 | A1 |
20170261213 | Park et al. | Apr 2017 | A1 |
20170223774 | Cheng | Aug 2017 | A1 |
20180058702 | Jang et al. | Mar 2018 | A1 |
20180187900 | Ivanovic | Jul 2018 | A1 |
20190145627 | Johnson | May 2019 | A1 |
Number | Date | Country |
---|---|---|
2365023 | Jul 2002 | CA |
2734926 | Oct 2011 | CA |
201680430 | Dec 2010 | CN |
7242625 | Mar 1973 | DE |
2167022 | Jul 1977 | DE |
3238441 | Apr 1984 | DE |
3446621 | Jun 1986 | DE |
3717728 | Dec 1988 | DE |
3150450 | Aug 1989 | DE |
4103664 | Jan 1992 | DE |
4228076 | May 1993 | DE |
19915538 | Oct 2000 | DE |
10218294 | Nov 2003 | DE |
60004581 | Jun 2004 | DE |
102004002466 | Aug 2005 | DE |
1020040009606 | Sep 2005 | DE |
102005059505 | Jun 2007 | DE |
19912452 | Oct 2007 | DE |
102006034391 | Jan 2008 | DE |
102007021297 | Nov 2008 | DE |
102008027220 | Dec 2009 | DE |
102008042467 | Apr 2010 | DE |
102008051829 | Apr 2010 | DE |
102009002276 | Oct 2010 | DE |
102010062147 | Jun 2011 | DE |
102013218714 | Apr 2014 | DE |
0000908 | Mar 1979 | EP |
0181704 | May 1986 | EP |
0429120 | May 1991 | EP |
0620698 | Oct 1994 | EP |
0690659 | Jan 1996 | EP |
1030114 | Aug 2000 | EP |
1344986 | Sep 2003 | EP |
1431670 | Jun 2004 | EP |
1586822 | Oct 2005 | EP |
1617148 | Jan 2006 | EP |
1099905 | Feb 2006 | EP |
1201998 | Mar 2006 | EP |
1460342 | May 2006 | EP |
2063181 | May 2009 | EP |
2063444 | May 2009 | EP |
2070442 | Jun 2009 | EP |
2116775 | Nov 2009 | EP |
2116829 | Nov 2009 | EP |
2299181 | Mar 2011 | EP |
2375170 | Oct 2011 | EP |
2144012 | Sep 2012 | EP |
2816291 | Dec 2014 | EP |
2835580 | Feb 2015 | EP |
3006832 | Apr 2016 | EP |
2848867 | Sep 2017 | EP |
2712071 | May 1995 | FR |
2787556 | Jun 2000 | FR |
2789753 | Aug 2000 | FR |
3003338 | Sep 2014 | FR |
2158225 | Nov 1985 | GB |
2001141244 | May 2001 | JP |
2005009693 | Jan 2005 | JP |
2007147131 | Jun 2007 | JP |
2010038475 | Feb 2010 | JP |
2011144982 | Jul 2011 | JP |
2011257021 | Dec 2011 | JP |
1991013526 | Sep 1991 | WO |
9850736 | Nov 1998 | WO |
2006072388 | Jul 2006 | WO |
2006136363 | Dec 2006 | WO |
2012077050 | Jun 2012 | WO |
2013098330 | Jul 2013 | WO |
2013104521 | Jul 2013 | WO |
2014194176 | Dec 2014 | WO |
2015086420 | Jun 2015 | WO |
Entry |
---|
Built-In Gas Cooktop, image post date Feb. 18, 2015, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 10 pages, <http://www.bestbuy.com/site/kitchenaid-36-built-in-gas-cooktop-stainless-stee1/8636634.p?skuld=8636634>. |
True-Heat burner, image post date Jan. 30, 2015, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 2 pages, <http://ovens.reviewed.com/news/kitchenaid-has-a-new-flame>. |
Metal Cover Gas Hob, image post date 2012, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 13 pages, <http://inse.gmc.globalmarket.com/products/details/metal-cover-gas-hob-8516959.html>. |
Penny Stove, image post date 2004, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 30 pages, <http://www.jureystudio.com/pennystove/stoveinstruction.html>. |
Number | Date | Country | |
---|---|---|---|
20200200394 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16021730 | Jun 2018 | US |
Child | 16807454 | US |