The invention relates to a froth collection launder, and particularly to a froth collection launder balancing froth load to the froth collection launder.
A froth flotation is used for treating mineral ore particles suspended in slurry. Air is bubbled through the slurry creating bubble-particle aggregates which move up in the froth flotation cell by buoyancy forming a froth layer on the surface. The froth from the formed froth layer is collected from the surface into a froth collection launder.
An object of the present invention is to provide a froth collection launder that allows a better froth handling. The object of the invention is achieved by a froth collection launder which is characterized by what is stated in the independent claim. The preferred embodiments of the invention are disclosed in the dependent claims.
The invention is based on the idea of a froth collection launder for a collection of froth from a mineral flotation comprising a first and a second sidewall which are joined to form a bottom comprising a tip extending along the bottom. The first sidewall comprises a first end and the second sidewall comprises a second end at their open ends. At least one of the first and the second ends comprises a froth overflow lip. When the froth collection launder is positioned at its operation position a centre line is located in the middle of the first and the second end in the cross direction of the froth collection launder. The tip is located between the centre line and one of the first and the second end in the cross direction of the froth collection launder and the tip forms the lowest point of the froth collection launder.
The froth collection launder of the invention is advantageous in balancing the froth load to the froth collection launders. Further, as the froth collection launder effects on the froth flow direction the transport distance of the froth to the launder lip can be optimized.
In the following the invention will be described in greater detail by means of preferred embodiments with reference to the accompanying drawings, in which
The tip 9 in the bottom 13 forms a froth flow 24 guide. The tip 9 is capable of dividing the froth flow 24 into a flow to the first sidewall 7a side of the launder 1 and into a flow to the second sidewall 7b side of the launder 1. The sidewalls 7a-b of the froth collection launder 1 guide the froth flows upwards.
The froth flow 24 comprises upwards flowing gas bubble-particle aggregates as shown in
Further, the unsymmetrically located tip 9 in the froth collection launder 1 provides a stable concentrate grade. Further, the drop back of particles is reduced as the separate froth 4 areas on the top of the tank 2 are in balance and the recovery is increased.
The width w of the froth collection launder 1 is 0.3≤w<1.5 m, for instance. This width range of the froth collection launder 1 provides a better froth 4 handling as the lower surface of the froth collection launder 1 covers an optimal amount of area above the upwards flowing gas bubble-particle aggregates. A balanced gas bubble-particle aggregate flow causes a stable froth layer 14.
At the lower limit of the width range the lower surface of froth collection launder 1 is wide enough to cover a reasonable froth 4 area for the unsymmetrically positioned tip 9 to effect to the gas bubble-particle aggregate distribution. If the froth collection launder 1 is too narrow it does not cover enough froth 4 area for making a change to gas bubble-particle aggregate distribution.
At the upper limit of the width range the lower surface of froth collection launder 1 is narrow enough not to cover an excessive froth area so that the gas bubble-particle aggregates below the froth collection launder 1 are able to coalesce into larger bubbles. Large gas bubbles cause instability to the froth layer 14 possibly causing the slurry 13 to flow over the overflow lips 5 of the froth collection launders 1 which would decrease the concentrate grade.
Further, the height of the froth collection launder may comprise 0.5≤h<2 m, preferably 0.5≤h<1.5 m.
This height range of the froth collection launder 1 locates the tip 9 optimally in respect of the upwards flowing gas bubble-particle aggregates.
The tip 9 at the lowest point of the froth collection launder 1 is preferably in the slurry 13 layer. Then the created froth 4 in the froth layer 14 is not able to flow below the tip 9 in the horizontal direction. Further, the sidewalls 7a-b of the froth collection launder 1 guide the created froth 4 upwards.
At the upper limit of the height range the tip 9 of the froth collection launder 1 is in the layer where the created gas bubble-particle aggregates have been relatively constantly distributed. If the froth collection launder 1 is too high the tip 9 may reach a zone in the slurry 13 layer where the gas bubbles are strongly distributing in a horizontal direction.
Additionally, the ratio between the width w and the height h of the froth collection launder 1 can comprise w/h 0.2-0.9, preferably 0.3-0.7.
The froth collection launder 1 may comprise pieces which are connectable to form the froth collection launder 1, i.e. the froth collection launder 1 can be modular.
Preferably the periphery shape of the froth collection launder 1 corresponds the tank 2 periphery shape The shape of the froth collection launder 1 may be circular or rectangular, for instance.
The froth collection launder 1 may comprise two froth overflow lips 5 one at the first 10a and one at the second end 10b. This construction reduces the transport distance of the froth 4.
The tank 2 contains slurry 13 and the flotation cell 3 is capable of separating the slurry 13 into an underflow 17 and an overflow 18 as shown in
Froth 4 is collected from the surface into a froth collection launder 1 located on the top of the cell tank 2. The froth flotation cell 3 can have one or more froth collection launders 1 which can be either internal or external or both, double, radial, depending on the capacity of the froth collection launder 1 necessary for the froth 4 removal. Large froth flotation tanks 2 comprising a volume 200 m3 or more are often provided with at least two launders 1.
The tank 2 is mechanically agitated. The agitator 19 disperses air in the slurry 13, pumps slurry 13, keeps solids in the suspension and provides an environment in the cell tank 2 for interaction of bubbles and hydrophobic particles and their subsequent attachment and therefore separation of valuable mineral particles from the undesired gangue mineral particles. The agitator 19 comprises an impeller 15 and a drive assembly for rotating the impeller 15. The drive assembly may comprise a motor 20 and a drive shaft 21.
A gas supply 16 to the froth flotation cell 3 comprises pressurized or self-aspirating gas supply 16. Examples of pressurized gas supply systems are pipes or tubes delivering gas to the bottom part of the tank. Gas may be supplied to the impeller 15 area also through conduits formed to the agitator 19 comprising the impeller 15. The impeller 15 provides a uniform gas distribution.
In
The tank 2 volume may comprise at least 200 m3. The tank 2 volume comprises the volume of the tank 2 surrounding the slurry 13 measured from the bottom of the tank 2 to height h1 of a froth overflow lip 5 of the froth collection launder 1. The large froth flotation cell 3 size poses challenges in regards of the froth flotation cell 3 operation, cell mixing and hydrodynamics, gas dispersion and froth transportation behaviour. Therefore in large froth flotation tanks 2 a strong agitation is necessary. The size of the impeller 15 does not increase with increasing froth flotation tank 2 size which means the gas bubbles continue dispersing in the slurry 13 layer longer. The froth load balancing with the unsymmetrical tip 9 performs well in strongly agitated froth flotation tanks 2.
The ratio between a height h from a bottom 13 of the tank 2 to the froth overflow lip 5 of the froth collection launder 1 and the diameter D of the tank 2 at the height of the impeller h/D is less than 1.5. With this ratio the tank 2 is relatively shallow with a large top surface for froth 4. The shallow tank 2 having a large top surface reduces the distance which the gas bubble-particle aggregates need to flow upwards. This reduces the risk of drop back of the gas bubble-particle aggregates during their flow towards the froth flotation launders 1.
Further, the arrangement shown in
In
The available froth surface area Afroth is the horizontal area at the top of the tank 2 which is open for the froth 4 to flow at the height h1 of the froth overflow lip 5 of the froth collection launder 1. A flotation cell 3 with a large froth surface area could lead to a situation where insufficient material with solid particles is present to stabilize the froth 4. The available froth surface area Afroth may then be reduced for creating a thicker froth layer 14. The reduction is made preferably at the periphery of the tank 2. The air bubbles distributed by an impeller 15 are not evenly distributed resulting in fewer air bubbles close to the tank 2 walls. Therefore the flow along the tank 2 walls can be guided without the risk of creating large air bubbles.
The reduction of the available froth surface area Afroth can be implemented by means of an internal peripheral launder 15 or a tapered tank shape 22 at the tank 2 periphery, for instance. An internal peripheral froth collection launder 1 extends around the inside top of the sidewall of the tank 2 and is shown in
In the arrangement of
In an arrangement comprising two froth collection launders 1a-b where the first launder 1a is arranged within the second launder 1b at a distance s apart the bottoms 8 of the both froth collection launders 1 may comprise tips 9. The first sidewall 7a of the first launder 1a faces towards the second sidewall 7b of the second launder 1b. The tip 9 of the first launder 1a is located between the centre line 11 and the second end 10b. In the first launder 1a only the second end 10b of comprises a froth overflow lip 5. Thus the tip 9 of the first launder 1a guides the froth flow 24 more towards the froth overflow lip 5 than towards the second end 10b of the second sidewall 7b of the second launder 1b.
The arrangement in a froth flotation cell 3 can be used for balancing froth load to the froth collection launders 1a-c.
As shown in the Figures it is not necessary that all the froth collection launder la-c bottoms 8 comprise tips 9 in a froth flotation cell 3. The arrangement in a froth flotation cell 3 may comprise a multiple of froth collection launders 1a-c wherein at least one froth collection launder 1a-c comprises a tip 9 in the bottom 13 forming a froth flow 24 guide.
The amount of valuable mineral in the slurry 13 reduces after each subsequent flotation cell 3. Therefore the thickness of the froth layer 14 above the slurry 13 decreases. Then the froth balance between the froth surface areas becomes more important that the required grade level can be achieved.
The presented arrangement and method are suitable for a slurry 13 comprising copper (Cu), for instance. The slurry 13 fed to the third froth flotation cell or subsequent froth flotation cell in the series may comprise copper (Cu) less than 0.2 weight %.
It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Part list: 1,1a-c a froth collection launder; 2 a tank; 3 a froth flotation cell; 4 froth; 5 a froth overflow lip; 6 a discharge pipe; 7a a first sidewall, 7b a second sidewall; 8 a bottom; 9 a tip; 10a a first sidewall end, 10b a second sidewall end; 11 a centre line; 12a-b an open area; 13 slurry; 14 a froth layer; 15 an impeller; 16 a gas supply; 17 an underflow; 18 an overflow; 19 an agitator; 20 a motor; 21 a drive shaft; 22 a tapered tank shape; 23 a primary line, 24 a froth flow.
A froth an available froth surface area; Apulp a pulp area; D a diameter; s a distance; h a height; h1 a height; L a length direction; r radial direction; x a cross direction; w a width.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/FI2017/050503 | Jul 2017 | US |
Child | 16733721 | US |