1. Field of the Invention
This invention relates generally to RQL combustors and more specifically it relates to a radially staged RQL combustor with tangential fuel air chambers as an internal combustion energy means for a gas turbine engine to yield low emissions, good flame stability, uniform flame front, mulifuel use including low BTU gas, and good flame stability at any power setting.
2. Description of Prior Art
It can be appreciated that RQL combustors have been in use for years. Typically, low emissions combustors used in gas turbine engines for Dry Low Emissions (DLE) and are either Lean Premixed Prevaporized (LPP) type or Rich burn-Quick quench-Lean burn (RQL) type using liquid or gaseous fuels; the combustors operate with a continuous flame and incorporate fuel nozzle assemblies to accept and premix amounts of regulated deliver fuel and air to yield a flammable mixture for the heat energy means to drive the gas turbine rotor spool. Features of a good combustor include: flame stability, low emissions, little or no soot, and high combustion efficiency over a wide range of engine power requirements and operating engines rotational speeds.
The main challenge with a combustor is controlling combustion flame temperature which by most part dictates emissions species levels of NOx (oxides of nitrogen, NO+NO2), CO (carbon monoxide) and UHC (unburned hydrocarbons). Conventional combustors of today for gas turbine engines have flame temperatures between ˜1340 F and 4050 F (dependant on fuel type); the lower flame temperature yields low NOx but excessive CO, UHC and the higher flame temperatures yield both low CO and UHC but higher flame temperatures yielding excessive NOx. Acceptable low levels of these emissions species could be found between flame temperatures operating range of ˜2400 F and 2800 F in a air rich, lean combustion F/A ratio environment. To attain this approximate narrow band of flame temperatures, variable geometry means to the air supply could be incorporated but would add complexity in hardware control methods and maintenance yielding an increase of cost. Of the various means of variable geometry for a LPP combustor system, would be one in which large quantities of engine air are admitted at the upstream end of the combustion liner at maximum power conditions to lower the primary-zone temperature thru lean F/A mixtures. With reduction in engine power, an increasing proportion of the air would be diverted to the downstream dilution zone to maintain a lean F/A mixture within the low emissions (NOx, CO, UHC) flame temperature window/range. U.S. Pat. Nos. 5,894,720 and 5,966,926 LPP type combustors offer low emission at high end power level and incorporates staged premix fuel/air nozzles to assist in the reduction of emission at off design power or reduced power requirements and aide in the combustion flame stability, but too lean of a F/A ratio would cause combustor flame extinction. The fuel/air premix nozzles of these noted LPP patents are positioned in the forward end of the combustor and direct pre-combustor exiting combusted gases into an annular combustor liner in a tangential direction for flame dispersion and stabilization assist. The fuel/air premix nozzles, incorporate combustor liner expansion means for the engine body fixed nozzle assemblies. Another means of reduced emissions thru LPP combustor design is seen in the ABB EV burner noted in ASME 99-GT-21B publication.
This offers low emissions over a wide range of power requirements and incorporates a pilot fuel nozzle system to assure flame stability of the LPP flame at off design, reduced engine power conditions and during transient power operation. Another issue with conventional combustors are fuel nozzle premix systems, the fuel/air mixtures prior to combustion ideally should be homogeneous, features of good mixedness; and concerning liquid fuels, a vaporization process to yield a gaseous state would be helpful to enhance mixedness in the F/A mixing process. Whittle in early years of gas turbines ˜1936 attempted to use fuel delivery in tubes within the combustor to vaporize fuel prior to combustion but had inner tube wall carbon issue. Rolls Royce, Curtis-Wright, Avco Lycoming, Snecma and Williams to name a few have successfully incorporated premix vaporizer tubes in gas turbine engines with different ranges of F/A mixture prior to combustion some rich enough not to support combustion with the premix tubes. Most use clean Jet fuels, and diesel type fuels have a propensity not only also to have cause coke between ˜283 F to 800 F like Jet fuels but at higher temperatures, ash deposits will be an issue if the fuel nozzle geometry is not designed properly. Another problem with conventional RQL type combustors with the primary zone rich F/A combustion and lean secondary combustion zone is the need to have good mixedness prior to combustion but less sensitive than the LPP combustor. Also, in the secondary combustion zone (RQL) a uniform quick quench mixing premix process of the rich oxidizing primary flame for the lean stage secondary flame is necessary having continuous fluid flow uninterrupted thru the secondary zone chamber with no stagnation area and or nof/a leanings stray air injection to add NOx. Rizk and Mongia in a 1992 paper on RQL combustors noted equivalence ratios (ER=actual F/A ratio divided by the F/A ratio of the unique fuel level stoichiometry) in the primary zone of 1.2 to 2.5 and tested and included liquid (limited <1.6) and gaseous fuels F/A ratio was highest at maximum power and was limited to avoid any hard carbon and subsequent turbine ingestion issue. The secondary mixing area of the can combustor (like 4,787,208 without variable geometry) had a typical reduced area to assist mixing of the jetted supply air for immediate leaning of the supplied rich flame primary oxidizing stage flame (typically high radiant red for diesel type fuel and dark blue for gaseous fuels). The highest flame temperature is ˜@ stoichiometry level with decreasing flame temperature as the F/A mixture is richened or leaned. The desire (ER) equivalence ratio for the secondary zone is ˜0.6 to ˜0.45. Variable geometry was experimented with in all zones (primary, secondary, and dilution) in the Rizk and Mongia efforts. In the U.S. Pat. No. 4,996,838 of 1991 (RQL type) combustor idea considered variable residence time vortex with liner wall louvers in the annular combustor and a reduced geometry between the primary and secondary chambers and radially opposing air jets for secondary air supply/mixing was incorporated. The AIAA 92-3471 in 1992 reflected some test results including ˜1.77 equivalence ratio (ER) in the primary zone and 0.6 (ER) in the secondary zone. The louvers most likely were added to rid liner wall carbon (wall stagnation flow and or raw fuel onto the liner wall yielding hard carbon) and with this added leaning air in the rich primary zone elevated NOx would ensue. June 1992 of Mechanical Engineering Magazine engine testing of a RQL liner using coal having a rich flame primary zone flame of ER ˜1.77 (˜3000 F) and the secondary flame was water quenched to ˜2000 F to help rid the coal ash along with low NOx. The U.S. Pat. No. 4,702,073 describes a vortex combustion process type can combustor having a reduced geometry section between the primary and secondary chambers having channel vanes of opposing air jets to continue to drive a vortex process, was especially helpful in collection of ash particles being radially outboard and duct out of the engine. U.S. Pat. No. 5,363,644 depicts a sidewinder combustor annular design and could be used as an RQL application but limited in use. The primary zone with circumferential tangent tube for fuel/air premix supply, as nozzles would have F/A unmixedness at high power levels yielding pockets of elevated flame temperature, and the louvers/internal plates added would yield elevated flames temperature pockets if a rich F/A mixture was adjacent to the louvers. The second row of tangent air supply tubes downstream continue the combustion leaning process; but if air in injected into the supplied rich primary flame the mixedness locally would be less than uniform and yield resultant elevated flame temperatures and subsequent higher levels of NOx emissions. This patent is an upgrade from the conventional combustors to a RQL type. U.S. Pat. No. 6,845,621 a RQL combustor, having an initial design thru empirical methods, offers good low emissions with gaseous fuel; and with the incorporation of 6,698,208 atomizing fuel nozzles, reduced emissions using liquid fuel could be exhibited thru improved F/A premix mixedness in the primary zone but needs a higher delta P across the combustor liner for atomizing/vaporizing as that of gaseous fuel. Analytics show the combustor could yield single digit NOx levels and CO simultaneously. Although the secondary air of supply in 6,845,621 yields a good quench zone having reduced area in the form of radial dams with radial opposing air supply jets axially located between the primary zone and secondary combustion chambers—the areas, downstream of and adjacent to the dam wall secondary side having stagnation areas and also in the primary zone side if injection of secondary air is possible low NOx levels will be compromised.
In these respects, the Radially Staged RQL Combustor with Tangential Fuel Premixers according to the present invention substantially departs from the conventional concepts and design of prior art, and in so doing provides an apparatus primarily developed for the purpose of providing an internal combustion energy device for a gas turbine engine to yield low emissions, high durability, multifuel use including low BTU gas and good flame stability at any power setting and or engine operating speed.
In view of the foregoing disadvantages inherent in the known types of RQL combustors now present in the prior art, the present invention provides a new radially staged RQL combustor with tangential fuel premixers construction wherein the same can be utilized for providing a internal combustion energy device for a gas turbine engine to yield low emission, reduced cost, improved durability, mulifuel use including low BTU gas—bio fuels, good flame stability at any power settings and ease of starting. The general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new radially staged RQL combustor with tangential fuel air premix chambers that has many novel features and result in a new radially staged RQL combustor which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art, either alone or in any combination thereof. To attain this, the present invention generally comprises a combustor assembly, having a primary combustion zone, secondary air area, a reduced combustor flow area for secondary air supply fuel/air premixing, secondary combustion zone, a dilution air supply area, a dilution zone, fuel injector assemblies, and a tangential supply primary zone located fuel air premix chambers. A Rich burn-Quick quench-Lean burn (RQL)combustor having a toroidal form primary combustion zone with tangential fuel air premix chambers and in general is radially outboard of the secondary combustion chamber. The fuel air premix chamber is an elongated tubular form, attached to the outboard primary combustion chamber, receives fuel and air within and premixes a combustible mixture and discharges the mixture tangential with velocity. The fuel injector is tubular form, is flange retained to the engine body, and with free length is insertable in the fuel air premix chamber longitudinal central f/a passageway for delivery of jetted liquid fuel or gaseous type. TMA Power, LLC has successfully tested this premix chamber requiring only 0.5 to 1.5 psig combustor differential pressure.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof my be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways including LPP combustion.
Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting.
A primary object of the present invention is to provide a radially staged RQL combustor scheme with tangential fuel air premix chambers that will overcome the shortcomings of the prior art devices.
An object of the present invention is to provide a radially staged RQL combustor with tangential oriented fuel air premix chambers provide a internal combustion energy device for a gas turbine engine to yield low emissions, reduced cost, high durability, multifuel use, good flame stability at any power or engine speed setting.
Another object is to provide a radially staged RQL combustor with tangential fuel air premix chambers that improves RQL combustion means, to yield low emission, high combustion efficiency, high turn down ration capability and has good flame stability throughout the gas turbine engine operating range of engine airflow and engine spool rotational speeds.
Another object is to provide a radially staged RQL combustor with tangential fuel air premix chambers that improves fuel preheating means prior to combustion in the primary combustion zone and yield a homogeneous F/A mixture within and yield premix chamber exit flow resultant in a tangential circumferential flow in the primary zone.
Another object is to provide a geometry form in the primary/secondary combustion chambers to lend smooth continuous thru flow without flow disruption, stagnation areas and minimal structural and or thermal stresses.
Another object is to provide a premixing mixing chamber to rid potential coke formation on the fuel fluid film dispersion wall either thru temperature control and or material selection. Also the fuel air premix chambers fluid residence time increase for improved homogenous F/A mixing is considered with geometry/length and internal swirl velocity. Ceramic material chamber could be incorporated to rid any material reaction with the fuel to rid propensity of attachment such as coke or ash issues.
Another object is to provide a radially staged RQL combustor with tangential Fuel/Air premixers having low pressure fuel injection either thru liquid fuel use jetted wall thin film dispersion or injector wall axially slotted thru cavities to allow low pressure gas dispersion within the primary premix chamber to improve F/A mixing prior to combustion.
Another object is to provide a radially staged RQL combustor with tangential oriented fuel air premix chambers that improves combustor design where the primary combustion zone incorporates a toroidal circumferential flow to keep unburned fuel outboard of the radially inboard primary zone exit flow to the secondary zone; where the radially inboard axial aft exiting primary zone flame flow intersects with the secondary air flow from at least one predominantly axial direction and the radially out board shell wall of the secondary combustion zone to create a combustor flow circumferentially and aft or a combination flow direction. The circumferential primary combustion zone fluid flow and or secondary combustion zone not only could assure unburned fuel being outboard due to higher density and giving more residence time for combustion but a circumferential duct could be incorporated as a means of ash collection in the case of pulverized coal fuel (example) a and at scheduled intervals combustor pressure could be used to eject overboard this collected ash.
Other objects and advantages of the present invention will become obvious to the reader and it is intended that these objects and advantages are within the scope of the present invention.
To the accomplishment of the aforementioned and related objects, this invention may be embodied in the form illustrated in the accompanying drawings, attention being called to the fact, however, that the drawing are illustrative only, and that changes my be made in the specific construction illustrated.
Various other objects, features and attendant advantages of the present invention will become fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:
Turning now descriptively to the drawings, in which similar reference characters denote similar elements throughout the several views, the attached figures illustrate a radially staged RQL combustor assembly with tangential fuel premix-vaporizer chambers, and comprise of: a primary combustion zone with fuel injection means, tangentially oriented primary fuel air premix chamber, a secondary air supply area, a reduced combustor flow area to receive secondary air supply for fuel/air premixing, a secondary combustion zone, a dilution air supply area, a dilution zone.
This Rich burn-Quick quench-Lean burn (RQL) combustor invention having a toroidal geometry primary combustion zone with tangential fuel air premix chamber is generally positioned radially outboard of the secondary combustion zone. The fuel air premix chamber 30 is a longitudinally elongated tubular form assembly with an outer tube 34 having internal cooling means 31A and a co-axial inboard fluid turning end 34A and the air 17 entrance end cap 76 end located to the outer circumferential shell position of the primary combustion chamber 40, front and aft forms 66a, 66b. The fuel air premix chamber assembly 30, having 38A mid tube wall outer tube 34 is exposed to the primary zone 41 hot gas receives fuel 73, 78 thru injector 20 or 22 and air 17 within and f/a premix chambers combustible mixture inboard of tube 32, 33 and discharges 39 with exit velocity, thru a differential combustor liner pressure, into the primary combustion zone 41 tangentially 35A. To avoid premix chamber entrance carbon at the fuel injection discharge into the tube 32 inboard cap 76 area, the air delivery 17 to the premix inboard tube chamber ID 32, an air preheating means via a counter flow heat exchanger means is incorporated. Fuel air premix chamber air flow 17 supply begins about the end cap 76 of the mixing chamber proximal end channel 31A entrance area between the inboard surface of outer tube 34, having cooling fins 31 multiple longitudinal channels to remove heat from tube 34 end form 34A. The heating of air 17 continues to the distal end of the outer tube 34 and turns inboard at the 34A end wall then flows toward the proximal mixing chamber end cap 76 channel 38 formed between inner tube 32 outer wall (could have fins to help heat the inner tube vaporizing the fuel wall) and the mid tube 38A inner wall, ducting premixing air 17 to and thru tangent air holes 36 to yield inner swirl 37. The end cap 76 inboard side begins the fuel/air mixing area. The air supply cross channels 36 can be elongated longitudinally axially extend the length of the tube 32 or additionally incorporate more circumferential displaced planer cross channels 36A yielding air 17 supply flow 37A downstream toward the exiting tube end 39 to assure premixing fuel/air mixture. The cross channel air supply channels 36 and 36A cold also be replaced by annular cross follow channels. In the case of liquid fuel, a end cap 76 hole 37 can be incorporated to prevent fuel stagnation about the end of the fuel injector 23A exit wall to rid potential coking during operation and or shutdown. The fuel air premix assemblies 30 receive jetted fuel 21 such to impart a force for wall 32 tube ID fuel dispersion resultant thin layer of fuel to aide in heating the fuel, as in the case of liquid fuels. The radial positioned injector receiver hole 20 is incorporated to allow free thermal radial expansion of the combustor liner 40, 66A, 66B about the injector assembly 20 or 22 and also retain the insertable inner tube sub assembly 32-76-38A. The inner tube 32 longitudinal central passageway 33 where the F/A premixing is done, the length design considers f/a residence time and the cross-section flow area design such to impart an exiting velocity 35 from tube exit area 39 creating a circumferential toroidal flow 35A.
The created circumferential tangent primary zone flow 35A assists in keeping raw unburned fuel outboard and away from the primary zone exit area 68 until combusted. For ease of assembly, reduced cost and simplicity the, tube 32 end cap 76 and mid tube 38A as a subassembly is longitudinally, co-axially insertable into the outer tube 34 with end form 34A having one end attached to the liner shell 66.
The fuel injector assembly 30
A Rich burn-Quick quench-Lean burn (RQL) combustor 40 has a toroidal form primary combustion zone 41 with tangential arranged fuel air premix chambers 30 and is radially outboard of a secondary combustion zone. The gas turbine combustor assembly 40 of this invention like other combustors involves complex combustion dynamics but has evolved in most part by empirical means. Material for this combustor must withstand high temperature environments and at times corrosive elements, say from supplied fuel or atmospheric gases. The combustor liner 40 or shell having inner and outer surfaces needs to have a cooling means and in this invention, uses induced velocity engine compressor air 17 as it is ducted to the designated combustion zones entry areas.
The preferred embodiment is represented in
The combustor liner walls are cooled by a controlled area ducted compressor air flow 17 velocity as it passes thru and to various combustor primary, secondary and dilution air delivery areas. The secondary zone 44 has lean fuel/air combustion and is of an annular form with volume consideration for longer residence time for reduced temperature CO conversion. The dilution zone 46, downstream of the secondary combustion zone, receives dilution air 14, supplied thru combustor liner 48 openings 79 accepting compressor discharge air 17 to condition the hot combustor gases for the turbine stage requirements. Air can also enter the dilution zone 46 from the annular outer shell 49 from the outer dilution zone duct shell thru holes 81 of
As yet another combustor inventive form,
In summary the aforementioned RQL combustor invention, heat energy device, receives air or oxidant and fuel, stage premixes a combustible f/a mixture and retains a combustion flame; and is generally for use in gas turbine engines to drive a turbine. The engine body having a compressor inlet connected to the compressor housing with a compressor rotor having rotating blades is internal to the engine body with fluid communication with the combustor and the turbine and the turbine rotor having blades has a common spool connection with the compressor. Fuel injectors with a controlled supplied fuel pressure deliver fuel to the premix-vaporizers located internally to the rich f/a primary combustion zone; and attached to the toroidal primary combustor chamber outer shell and positioned tangentially having geometry-length to induce a circumferential combustion flow. Within the primary combustor chamber an igniter is positioned to ignite the primary chamber delivered premixed combustible mixture from the premix vaporizers. Also, a separate torch supply f/a mixture system could be used to start the combustion process, where at a defined engine speed the f/a mixture from the premix vaporizers could be switched to the main fuel premix primary F/A system. The combusted rich fuel-air mixture is supplied to the radially inboard positioned toroidal geometry shell form, and the outboard of the secondary combustion zone combustor and between the two combustor zones a reduced axial section of axial annular secondary outer liner section receives a secondary air supply to yield a lean secondary f/a combustible mixture. A flame temperature of ˜2500 F is ideal for low NOx and CO simultaneously. NOx although tested low in this device, like other combustor devices, is a summing species collective from the primary zone and secondary zone. The CO specie with reduced flame temperature below 2500 F requires increased residence time to allow conversion to CO2 for complete combustion. A dilution zone is downstream of the secondary combustion section with correspondingly further compressor supply air in transit to the dilution holes is a liner cooling mean. The dilution zone is connected to the turbine nozzle downstream of the secondary zone to create the desired gas temperature to drive the bladed turbine rotor. The secondary air supply for the quick quench premixing area 83 process with the supplied primary fuel rich combustion gases 83 can be injected with continuous non disruptive flow geometry from an axial supply or in combination with an externally radial channel induced downstream supply; also but not show in previous figures can be secondary mixing air could be injected axially from two opposing axial displaced circumferential air annulus forms with channel flow. The secondary combustion gases can be ducted axially left, right or radially inboard to the dilution zone and subsequent turbine nozzle and turbine rotor locations.
As to a further discussion of the manner of usage and operation of the present invention, the same should be apparent from the above description. Accordingly, no further discussion relating to the manner of usage and operation will be provided.
With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.
Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application claims benefit of the provisional application Ser. No. 60/816,404 filed Jun. 26, 2006.