The invention relates to a fuel assembly for a pressurized water reactor, as it is known, for example, from U.S. Pat. No. 6,167,104 and German patent DE 196 35 927 C1.
An exemplary such fuel assembly or fuel element is illustrated in
In order to increase the critical heat flux (CHF), the spacers are provided with flow guiding means which besides a local mixing function, for example by generating a circular flow downstream of the spacer, also have the function of inducing a transverse exchange of the coolant between hotter regions and colder regions of the fuel assembly. Such transverse exchange is used to homogenize the coolant temperature over the entire cross-sectional area of the fuel assembly, and thereby increase the critical heat flux. The transverse exchange may also take place beyond the borders of a fuel assembly, as is known from German published patent application DE 21 22 853 A and U.S. Pat. No. 3,749,640. The prior patent discloses a fuel assembly for a pressurized water reactor, in which such transverse exchange also takes place between neighboring fuel assemblies, in that a circulating flow is generated around an intersection point formed by four neighboring fuel assemblies.
In fuel assemblies having spacers whose grid cells are separated from one another by single-walled grid bars as in the embodiment known from German application DE 21 22 853 A and U.S. Pat. No. 3,749,640, these flow guiding means are formed by guide plates which are arranged on the downstream side around the center of a flow sub-channel, formed by an intersection point of the grid. These guide plates are also referred to as circulator of deflector vanes. There may be up to four such guide plates or vanes at each intersection point.
Such a known fuel assembly is represented in plan view of a spacer 4a in
An improvement of the transverse transport of the coolant in the fuel assembly is achieved by a spacer 4b as shown in
An alternative spacer design is known, for example, from U.S. Pat. No. 4,726,926 and European published patent application EP 0 237 064 A2. In the spacer disclosed therein, each grid bar is formed by two thin metal strips welded together. Instead of circulator vanes on the upper edge of the grid bar, the metal strips in these spacers are provided with raised profiles which extend into the interior of the grid cell respectively bounded by the metal strip. Oppositely neighboring profiles of the metal strips, which are assembled to form a grid bar, respectively form an approximately tubular flow channel extending in the vertical direction. Each flow channel is inclined relative to the vertical and generates a flow component of the cooling liquid oriented parallel to the bar and directed at an intersection point of the bars. The inclination angles of the flow sub-channels are in this case arranged so as to create a circular flow around the fuel rods respectively passing through the grid cells.
When such a known double-walled spacer is used, only slight fretting damage can be observed on the fuel rod cladding tubes in practical operation.
The flow pattern due to such a known spacer 4c gin the through-flow is represented in
It is has become known from German utility model DE 201 12 336 U1 furthermore to provide such a double-walled spacer with guide vanes in the vicinity of the intersection points, in order to superimpose a flow component transverse to the fuel rod on the coolant flowing through the flow sub-channel. This measure can improve the critical heat flux.
It is accordingly an object of the invention to provide a fuel assembly for a pressurized water reactor which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which provides for a fuel assembly that is optimized both in respect of its critical heat flux and in respect of its fretting properties.
With the foregoing and other objects in view there is provided, in accordance with the invention, a fuel assembly for a pressurized water nuclear reactor, comprising:
a multiplicity of fuel rods;
a multiplicity of axially separated spacers holding the fuel rods, the spacers being constructed of mutually intersecting grid bars forming a grid with a multiplicity of grid cells arranged along rows and columns;
the grid bars including flow guiding devices for imposing a transverse flow component, oriented parallel to a spacer plane, on cooling water respectively flowing axially in flow sub-channels between the fuel rods;
at least one of the spacers being formed of a multiplicity of sub-regions each larger than a respective the grid cell; and
the flow guiding devices being configured and distributed in the spacer to generate a transverse flow distribution in a flow above each the sub-region causing an exchange of cooling water substantially exclusively between flow sub-channels lying within the respective the sub-region.
In other words, the objects are achieved according to the invention by a fuel assembly for a pressurized water nuclear reactor that contains a multiplicity of fuel rods guided in a multiplicity of axially separated spacers. Each of the spacers are constructed from intersecting grid bars that respectively form a grid having a multiplicity of grid cells. The cells are arranged in a grid patters in rows and columns. The grid bars includes flow guides that impose a transverse flow component, oriented parallel to the spacer plane, on the cooling water respectively flowing axially in flow sub-channels between the fuel rods. At least one spacer is constructed from a multiplicity of sub-regions that are each larger than a grid cell, and the flow guiding means are configured and distributed in the spacer so to generate a transverse flow distribution in the flow through each sub-region which causes exchange of cooling water at least almost exclusively between flow sub-channels lying inside the sub-region. In other words: at least in a local subsidiary region lying inside the sub-region and spanning the boundary between two neighboring flow sub-channels, a directed transverse flow is formed over the sub-region which is restricted to the sub-region and does not continue into neighboring sub-regions, or does so only to a negligible extent. At the edge of the sub-region, the velocity component vn of the coolant perpendicular to the edge is thus equal to zero.
The fretting resistance is significantly improved by this measure in spite of the critical heat flux being high as before.
The invention is based on the discovery that although a spacer provided with only two deflector elements (split vanes) at each intersection point, as represented for example in
The invention is now based on the idea that in order to improve the critical heat flux, it is not absolutely necessary to generate a transverse exchange of the coolant over virtually the entire cross-sectional area of the fuel assembly. Rather, it is sufficient for a pronounced transverse exchange of the coolant to take place only between a group of neighboring flow sub-channels of a sub-region.
In a preferred configuration of the invention, the forces or torques exerted by such a local inhomogeneity on the fuel rod sub-bundle passing through the sub-region are at least approximately compensated for overall with respect to the entire fuel assembly cross section in that at least the multiplicity of sub-regions is respectively assigned at least one sub-region disjoint from it, so that the forces and/or torques respectively due to the transverse flow in the sub-region and in the disjoint sub-region assigned to it, or in the disjoint sub-regions assigned to it, at least approximately compensate for each other.
In another preferred configuration of the invention, the sub-region and at least one disjoint sub-region assigned to it are constructed mutually mirror-symmetrically. In a way which is simple in terms of design, the mirror symmetry can achieve at least approximate magnitude equality and opposite directionality of the torques respectively due to the transverse flows in these sub-regions. Owing to the mirror symmetry, furthermore, the forces respectively created in the sub-regions can also compensate for each other.
Preferably, the sub-regions assigned to one another adjoin one another. In this way, the resulting forces and/or torques are compensated for directly at the boundaries of the sub-regions.
In a particularly preferred configuration of the invention, the flow guiding means inside a sub-region are configured so that the transverse flows generated inside this sub-region exert only a torque on it.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a fuel assembly for a pressurized water nuclear reactor, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
The spacer 4d is constructed from a multiplicity of rectangular, square in the example, disjoint sub-regions 50 which are each larger than an individual grid cell 6. In the exemplary embodiment, each sub-region 50 comprises a full central grid cell 6, respectively four neighboring half grid cells 6 and four quadrants of the diagonally adjacent grid cells 6. The total area of each sub-region 50 therefore corresponds to the area of four grid cells 6. Since the corners of the sub-regions 50 respectively lie in the middle of a grid cell 6, each sub-region 50 covers four full flow sub-channels 30. This is illustrated by shading for a flow sub-channel 30 surrounded by four fuel rods 2. Four full sub-regions 50a-d are indicated in the figure. The flow guiding elements 26 lying inside a sub-region 50a-d are arranged mirror-symmetrically to the deflector elements of the sub-region 50a-d respectively neighboring at a common interface. Sub-region 50b is thus derived from the sub-region 50a by reflection through a mirror plane 52 extending perpendicularly to the plane of the drawing. Correspondingly, sub-region 50c is mirror-symmetric to the sub-region 50b with respect to a mirror plane 54. Sub-region 50d is derived from the sub-region 50c by reflection through the mirror plane 52, and sub-regions 50a and 50d are mutually mirror-symmetric with respect to the mirror plane 54. The sub-regions neighboring the sub-regions 50a-d, which are only partially reproduced in the figure, are constructed in the same way. The sub-region 50a is mapped onto itself by the fourfold reflection through mirror planes respectively orthogonal to one another and intersecting on a straight line.
The effect of this design layout is now that in each of the sub-regions 50a-d, it is only possible to form transverse flows 56 which are locally limited to the respective sub-region 50a-d and do not extend beyond its boundaries, but instead they encounter at these boundaries transverse flows of the neighboring sub-region 50a-d which have a different direction. Locally limited transverse following in the context of the invention means that the normal component vn of the horizontal flow velocity at the edge of each sub-region 50a-d is at least approximately equal to zero: vn=0.
In each of the sub-regions 50a-d in the exemplary embodiment, locally directed transverse flows are created which produce transverse exchange of cooling water between neighboring flow sub-channels 30 that lie inside a sub-region 50a-d. They respectively intersect with the local transverse flows of the neighboring sub-region, however, so that they cannot be combined to form overall flow patterns. The mirror-symmetric arrangement of the four sub-regions 50a-d arranged around an intersection point thus effectively prevents the creation of large-area transverse flows, i.e. ones extending over the entire cross section of the fuel assembly.
In the exemplary embodiment according to
The flow guiding means are not explicitly represented in this and the following
In these exemplary embodiments as well, the sub-regions 50a to d are constructed mirror-symmetrically to one another so that they are derived from one another by reflection through a mirror plane lying in the respective interface. It can furthermore be seen in the example of
In the exemplary embodiments according to
In all the exemplary embodiments according to
In the exemplary embodiment according to
A sub-region 50a, b is respectively formed by four grid cells 6 in this exemplary embodiment, the first flow channels 44a respectively being arranged at the edge of each sub-region 50a, b. The sub-regions 50a, b are likewise derived from one another by reflection through a mirror plane defined by the interface between these two sub-regions 50a, b. The obliquely extending first flow channels 44a generate a circulating flow in each sub-region 50a, b, although they are directed oppositely to each other. This circular flow travels clockwise in the sub-region 50a, and counterclockwise in the sub-region 50b. In the middle of each sub-region 50a, b, deflector elements 26 are arranged which additionally generate a circular flow in the central flow sub-channel 30, which is directed oppositely to the flows circulating outside so that the torque respectively generated on the entire sub-region 50a, b is correspondingly reduced and good cooling of the zones of the fuel rods neighboring the central flow sub-channels 30 is ensured.
The circulating flow respectively generated at the outer circumference of the sub-regions 50a, b generates better mixing between flow sub-channels 30 which lie at the edge of the respective sub-region. This, however, is restricted to the transverse exchange between the sub-segments of different flow sub-channels 30 which lie inside the sub-region 50a, b. In this exemplary embodiment as well, the sub-regions 50a, b are constructed according to the same reflection rules as those explained with reference to FIGS. 1 to 5.
The exemplary embodiment according to
Instead of the vane-shaped deflector elements respectively provided at the inner-lying intersection points in the exemplary embodiments according to
Such a circulating flow around the sub-region can also be generated by single-walled grid bars and deflector elements 26 formed on them, as illustrated for a spacer 4h in
The exemplary embodiment according to
For simplicity, the previous examples have been based on a fuel assembly which can be constructed by appropriate reflection rules starting from one sub-region. This is not readily possible in a real fuel assembly, however, since the strict symmetry required for this is broken in a narrow configuration at the lateral edge regions of the fuel assembly and in the region of the structure tubes arranged in the fuel assembly.
The four inner-lying sub-regions of class 506 can now be constructed mirror-symmetrically to one another, as explained with reference to FIGS. 1 to 10 and indicated by the letters a-d, sub-region 506b being derived by reflection from 506a, 506c being mirror-symmetric to 506b and 506d being mirror-symmetric to 506c, so that 506a is again mirror-symmetric to 506d. In the same way, the other sub-regions are constructed mirror-symmetrically to one another. The four sub-regions of class 501 at the corners of the spacer 4j constructed mirror-symmetrically to one another in the same way, as likewise indicated by the letters a-d in the figure.
The letters a-d denote one type in each class 501-506. Sub-regions of different classes 501-506 but of the same type a-d are substantially equivalent in terms of the design layout and the arrangement of the flow deflecting means arranged in them, i.e. the intrinsic symmetry.
The design principle specified for the sub-regions 506a to d is now maintained for the entire spacer 4j so that, for example, the type b sub-region of class 506 and the type a sub-region of class 504 arranged to the right of it substantially correspond in their structure. This design principle is continued over the entire spacer 4j, so that overall transverse flows cannot be created in this exemplary embodiment either. It furthermore ensures that for each class 501-506, there are four or eight sub-regions constructed mirror symmetrically to one another according to the aforementioned design principles, so that all torques and forces vanish in relation to the entire cross-sectional area of the fuel assembly.
For spacers whose number of columns and rows is a prime number, different types of sub-regions that vary in size must be introduced according to
Number | Date | Country | Kind |
---|---|---|---|
10 2004 014 499.0 | Mar 2004 | DE | national |
This is a continuing application, under 35 U.S.C. §120, of copending international application No. PCT/EP2005/001137, filed Feb. 4, 2005, which designated the United States; this application also claims the priority, under 35 U.S.C. §119, of German patent application No. 10 2004 014 499.0, filed Mar. 25, 2004; the prior applications are herewith incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP05/01137 | Feb 2005 | US |
Child | 11399138 | Apr 2006 | US |