1. Technical Field
This disclosure generally relates to furnaces, and more specifically relates to combustion furnaces that burn fuel in a combustion chamber.
2. Background Art
Furnaces of various different sizes and configurations have been developed for the burning of fuel, such as large bales of hay. These furnaces typically have one door, or set of doors that cover an opening to the inside of the furnace. Fuel is loaded through this opening. These furnaces can consume large amounts of hay which results in large amounts of ash. Some quantity of ash can stay in the furnace without affecting the operation of the furnace, but after a period of time there is so much ash that the ash needs to be removed from the furnace. With only one access point in the furnace, the ash has to go out of the same door where the fuel comes in. This means a person has to get into the furnace and manually shovel out the ashes through the door, or use a piece of machinery to remove the ashes. Regardless of whether ash removal is done manually or by machine, the furnace must generally be allowed to cool to allow a person or machine to enter the furnace without risk of injury to a person or damage to a machine. It takes a long time after the fire in the combustion chamber is no longer burning for a large furnace to cool. This means the need to clean out ash from the furnace may result in the furnace being out of commission for a significant period of time each time it needs to be cleaned. [0005]
Whenever the furnace is out of commission, a more expensive heating system must be used in its place costing extra money. It would be very advantageous to have a way to clean out the ashes from the furnace without having to wait for the furnace to cool.
In addition, removing ashes from the same door where fuel is added creates a large pile of ashes that must be removed before new fuel is added to the furnace. If the ashes are not completely removed, the fuel being added may ignite from the hot ashes before the fuel is loaded into the stove.
One possible solution would be to put doors on both sides of the furnace so that you could load fuel from one side and remove ash from the other. However, from a practical standpoint, this creates a dangerous situation. If the furnace were not allowed to cool, when both doors were opened a wind tunnel would be created across the hot fuel and ash, providing a high supply of oxygen to the fuel and ash, and would literally result in a fire tunnel that would be a danger to people or property in the vicinity of the furnace.
Without a way to clean out a large furnace that burns fuel such as large bales of hay in a more simple, convenient and safe manner, the use of such furnaces will continue to be subject to the disadvantages discussed above.
A furnace includes a chute extending from the back of a combustion chamber to allow for the material in the combustion chamber to be pushed into the chute and ejected from the chute by the force of new fuel being pushed into the furnace. No time is lost in cleaning out the furnace as the cleaning of the furnace happens as a byproduct of fuel being loaded into the furnace. The ease and efficiency of operation, in that the cleaning happens by performing the necessary task of loading the furnace with fuel, will allow furnace operation in a more simple, convenient, and safe manner without requiring the furnace to be shut down.
The foregoing and other features and advantages will be apparent from the following more particular description, as illustrated in the accompanying drawings.
The disclosure will be described in conjunction with the appended drawings, where like designations denote like elements, and;
A fuel-burning furnace 100 is shown in various views in the figures. The fuel-burning furnace 100 includes a combustion chamber 110 with a front 130 and a back 120, one or more doors 150, a chute 140 with a chute door 160, a blower 170, an exhaust system 180, and a water chamber 190. The bottom portion of combustion chamber 110 is preferably in the shape of a transverse substantially semi-cylindrical surface, thereby providing a curved bottom surface that approximately matches the curvature of a large round bale of hay. The combustion chamber 110 may include one or more heat exchangers preferably near the top of the combustion chamber to increase the surface area for heat transfer, thereby enhancing the transfer of heat from the combustion chamber. Doors 150 are opened to gain access to the combustion chamber 110, such as for loading fuel and for servicing the inside of the combustion chamber 110. The chute 140 has a receiving end coupled to the lower portion of the back of the combustion chamber 120 and a discharge end opposite the receiving end. The chute door 160 is attached to the top of the discharge end of the chute 140 by a hinging mechanism that includes, but is not limited to, hinges, and is normally biased in a closed position by the force of gravity when the combustion chamber 110 is empty.
Doors 150 provide an opening to the combustion chamber 110. Doors 150 may include one or more blowers 170 that provide air flow into the combustion chamber to aid in combustion. Blowers 170 are preferably fixed in location, but could include an oscillating portion that distributes air flow to different parts of the combustion chamber. In the alternative, the blowers 170 could be fixed while motorized louvers in the combustion chamber distribute air flow from the blowers to different parts of the combustion chamber. Exhaust system 180 provides a path for smoke to exit the combustion chamber 110. Water chamber 190 preferably surrounds the combustion chamber 110 to provide an efficient transfer of heat from the combustion chamber 110 to water within the water chamber 190.
The chute 140 can be shaped to the shape of the type of fuel that is being used. For example, the bottom of chute 140 may have a curved shape that would be ideal for large round bales of hay. This curved shape is shown in
A fuel-burning furnace is not normally used year round and often goes idle during the summer months. During these idle times it is often good to do a thorough cleaning of the fuel-burning furnace so that it is cleaned out before the furnace is used continuously again. A pushing tool 700 is shown in
To prevent chute door 160 from getting stuck on material 300 after fuel 200 is loaded in combustion chamber 110, a hand crank 910 can be used to open chute door 160, as shown in
Chute door 160 is merely one possibility for the material 300 to leave the chute 140. Any arrangement of mechanisms or openings at the discharge end of the chute, that allow the material to be discharged as new fuel is being loaded into the combustion chamber, is within the scope of the disclosure and claims herein. Examples of possible arrangements include, but are not limited to a chute door, a grate on the bottom of chute 140, and a simple opening on the bottom of chute 140 or at the end of chute 140. However, the chute door is the preferred implementation because closing the chute door cuts off outside air from reaching the combustion chamber 110 via chute 140.
The fuel-burning furnace 100 eliminates the problem of needing to wait for the furnace to cool before removing the material, such as ash, from the combustion chamber. The fuel-burning furnace 100 can be loaded with fuel 200 as shown in
Because material 300 being pushed into chute 140 may cause material 300 to exit the discharge end of the chute 140, there needs to be a safe place for the material 300 to go when exiting the discharge end of the chute 140. In one suitable implementation, a concrete pit is provided below the discharge end of the chute 140. Because concrete is non-flammable, the hot material 300 may fall from the chute 140 into the concrete pit to cool. The pit may include a ramp that provides a tractor with a front-end loader access to clean out the pit when the pit becomes full of ash. In addition, the pit may be water-tight so a pool of water is present in the pit when material is ejected from the chute, causing the hot material to fall in the water and be instantly cooled. The presence of water in the pit will also minimize the dust generated when material is ejected from the chute. A pit that holds water preferably includes a way to drain the water, such as a piece of sheet metal similar to known irrigation gates that may be removed to allow the water to drain from the pit.
Since the fuel-burning furnace 100 is loaded with new fuel while the fire in the combustion chamber is still burning, it is possible that some of the material pushed out of the chute could still be on fire, or may catch fire once exposed to the ambient air outside the furnace. For this reason, a male hose fitting 400 is attached to the water chamber 190 as shown in
Practical experience has shown that many fuels such as hay provide such a hot fire that normal metal doors risk warping under the stress of the extreme heat in the combustion chamber. As a result, the doors 150 preferably include a water jacket that helps to keep the doors at a temperature that keeps the metal on the doors from warping. The water jackets on the doors may communicate with the water chamber 190, thereby allowing the heat at the doors to be transferred to water in the water chamber 190.
While the furnace 100 disclosed herein includes a water chamber 190, the disclosure and claims herein extend to any suitable configuration for transferring heat from the combustion chamber 110 to an area to be heated, such as a farm building.
One suitable use for the fuel-burning furnace 100 would be to heat water in water chamber 190, which can then be used in connection with heat exchangers and blowers to heat a home, chicken house, barn, etc. In the configuration shown in the figures for a furnace that holds two large round bales of hay, the capacity of water chamber 190 is approximately 4,000 gallons, providing a great deal of heating capacity. Depending on the size and configuration of buildings to be heated, if the quantity of water in the water chamber 190 is insufficient to provide the desired heating, a large insulated water reservoir could be coupled to the water chamber 190 to hold water heated by the furnace 100 until it is needed.
An additional benefit to fuel-burning furnace 100 is its size. Fuel-burning furnace 100 is large enough to be used on a commercial level, but is small enough to be transported. Prior art furnaces are generally built onsite and are not easily transported. Fuel-burning furnace 100 can be moved in a number of ways including, but not limited to, being put on a semi trailer or having a hitch and wheel kit to tow it behind a vehicle.
Practical experience with a prototype of the furnace disclosed herein shows a significant cost savings when using the furnace. The furnace has been used to heat several chicken houses on a poultry farm. Due to the relatively low cost of suitable hay and straw in large round bales, the inventors have realized a savings of nearly two thirds of their typical energy bill when heating with the furnace compared to heating the chicken houses with propane. This significant savings in energy costs can make the furnace pay for itself in a very short period of time.
The furnace provides a way for material in the furnace to be ejected from the furnace by the force of new fuel being added to the furnace. The result is a furnace that may be continuously used without having to stop the combustion in the furnace to clean out ash from the furnace.
One skilled in the art will appreciate that many variations are possible within the scope of the claims. Thus, while the disclosure is particularly shown and described above, it will be understood by those skilled in the art that these and other changes in form and details may be made therein without departing from the spirit and scope of the claims. For example, while a two-bale version of the furnace is shown in the drawings and described herein, a single-bale version of the furnace is also within the scope of the disclosure and claims herein.