Claims
- 1. A carbon monoxide sensor comprising a gas-monitoring PEM-probe including a proton exchange membrane having an anode and a cathode affixed to opposing first and second surfaces of said membrane, a first electrical current collector engaging said anode, a second electrical current collector engaging said cathode, an electrical discharge circuit connectable between said current collectors, said discharge circuit having a first electrical resistance valued for discharging said PEM-probe at a first rate selected to monitor the degrading output of said PEM-probe incident to CO contamination of said anode, an electrical purging circuit connectable between said current collectors, said purging circuit having a second electrical resistance which is less than said first electrical resistance such that upon discharge of said PEM-probe through said second resistance the potential of said anode is raised to at least 0.8 V (RHE) to effect electrochemical oxidation of any CO adsorbed on said anode, and an electrical switch in electrical series connection between said current collectors and adapted to intermittently, alternately electrically connect said current collectors to said discharge and said purging circuits.
- 2. A sensor in accordance with claim 1 including a timer operatively connected to said switch for effecting said alternate connecting of said current collectors at predetermined time intervals.
- 3. A sensor in accordance with claim 2 including a timer operatively connected to said switch for periodically effecting said alternate connecting of said current collectors.
- 4. A sensor in accordance with claim 1 including a passage for admitting a gas to be monitored to said anode, and a valve operatively associated with said passage for restricting the flow of said gas to said anode when said switch connects said current collectors to said purging circuit.
- 5. A carbon monoxide sensor comprising a gas-monitoring PEM-probe including a proton exchange membrane having an anode and a cathode affixed to opposing first and second surfaces of said membrane, a first electrical current collector engaging said anode, a second electrical current collector engaging said cathode, an electrical discharge circuit connectable between said current collectors, said discharge circuit having a first electrical resistance valued for discharging said PEM-probe at a rate selected to monitor the degrading output of said PEM-probe incident to CO contamination of said anode, an electrical purging circuit connectable between said current collectors, said purging circuit including a voltage source having a potential capable of raising the potential of said anode to at least about 0.8 V (RHE) to effect electrochemical oxidation of any CO adsorbed on said anode, and an electrical switch in electrical series connection between said current collectors and adapted to intermittently, alternately connect said contacts to said discharge and said purging circuits.
- 6. A sensor according to claim 5 wherein said voltage source is a charge storage device.
- 7. A sensor according to claim 6 wherein said charge storage device is a voltaic device.
- 8. A sensor according to claim 6 wherein said voltage source is a capacitor.
- 9. A sensor according to claim 5 including a timer operatively connected to said switch for periodically effecting said alternate connecting of said contacts.
- 10. In a fuel cell system comprising (a) a stack of PEM H.sub.2 --O.sub.2 fuel cells each comprising principally a proton exchange membrane having an anode and a cathode affixed to opposing first and second surfaces thereof, a first flow channel adjacent said anode for flowing hydrogen into contact with said anode, and a second flow channel adjacent said cathode for flowing an oxygen-bearing gas into contact with said cathode, (b) an oxygen-feed manifold supplying oxygen to said cells, and (c) an hydrogen-feed manifold supplying hydrogen to said cells, the improvement comprising: a carbon monoxide sensor communicating with said hydrogen-feed manifold for sensing the concentration of any CO in said manifold, said sensor comprising a gas-monitoring PEM-probe including a proton exchange membrane having an anode and a cathode affixed to opposing first and second surfaces of said membrane such that said anode from said PEM-probe is exposed to said hydrogen from said hydrogen-feed manifold, a first electrical current collector engaging the anode from said PEM-probe, a second electrical current collector engaging the cathode of said PEM-probe, an electrical discharge circuit having a first electrical resistance valued for discharging said PEM-probe at a rate selected to monitor the degrading output of said PEM-probe incident to CO contamination of said anode, an electrical purging circuit adapted to raise the potential of said anode from said PEM-probe sufficiently to effect electrochemical oxidation of any CO adsorbed on said anode, and an electrical switch in electrical series connection between said current collectors and adapted to alternately connect said contacts to said discharge and said purging circuits.
- 11. A carbon monoxide sensor comprising a gas-monitoring PEM-probe including a proton exchange membrane having an anode and a cathode affixed to opposing first and second surfaces of said membrane, a first electrical current collector engaging said anode, a second electrical current collector engaging said cathode, an electrical discharge circuit connectable between said current collectors, said discharge circuit having a first electrical resistance valued for discharging said PEM-probe at a first rate selected to monitor the degrading output of said PEM-probe incident to CO contamination of said anode, an electrical purging circuit connectable between said current collectors an adapted to raise the potential of said anode to at least 0.8 V (RHE) to effect electrochemical oxidation of any CO adsorbed on said anode, and an electrical switch in electrical series connection between said current collectors and adapted to intermittently, alternately electrically connect said current collectors to said discharge and said purging circuits.
Government Interests
The Government of the United States of America has rights in this invention pursuant to Agreement No. DE-AC02-90CH10435 awarded by the U.S. Department of Energy.
US Referenced Citations (6)
Foreign Referenced Citations (7)
Number |
Date |
Country |
0710996 |
May 1996 |
EPX |
0762117A2 |
Mar 1997 |
EPX |
0826233 |
Sep 1998 |
EPX |
4315749 A1 |
Nov 1994 |
DEX |
19710819 |
Apr 1998 |
DEX |
59-051480 |
Mar 1984 |
JPX |
02311302 |
Dec 1990 |
JPX |