The present invention relates to fuel cells, and in particular to methods and apparatus for fluid delivery to the active surface of anode and/or cathode plates in, for example, solid polymer electrolyte fuel cells.
Conventional electrochemical fuel cells convert fuel and oxidant into electrical energy and a reaction product. A typical layout of a conventional fuel cell 10 is shown in
Sandwiching the polymer membrane and porous electrode layers is an anode fluid flow field plate 14 and a cathode fluid flow field plate 15. Intermediate backing layers 12a and 13a may also be employed between the anode fluid flow field plate 14 and the anode 12 and similarly between the cathode fluid flow field plate 15 and the cathode 13. The backing layers are of a porous nature and fabricated so as to ensure effective diffusion of gas to and from the anode and cathode surfaces as well as assisting ill the management of water vapour and liquid water.
The fluid flow field plates 14, 15 are formed from an electrically conductive, non-porous material by which electrical contact can be made to the respective anode electrode 12 or cathode electrode 13. At the same time, the fluid flow field plates facilitate the delivery and/or exhaust of fluid fuel, oxidant and/or reaction product to or from the porous electrodes 12, 13. This is conventionally effected by forming fluid flow passages in a surface of the fluid flow field plates, such as grooves or channels 16 in the surface presented to the porous electrodes 12, 13.
With reference also to
Other manifold apertures 23, 25 may be provided for fuel, oxidant, other fluids or exhaust communication to other channels in the plates, not shown.
Various configurations of channels 16 in the fluid flow field plates 14, 15 are known. One configuration is the open ended serpentine pattern of
With reference to
The formation of fluid flow channels or conduits 16 in the fluid flow field plates is an exacting procedure, typically performed using a chemical etching process or other high definition process in order that an adequate degree of control over the depth, width and pattern of the channels 16 can be achieved, while forming fluid flow field plates as thin as possible. Any inconsistencies in the chemical etch process resulting in variations in depth, width and pattern of the fluid flow plate can severely disrupt fluid flow to and from the MEA.
For example, the pressure drop between the inlet port 21 and outlet port 22 may vary significantly from plate to plate and therefore from cell to cell within a fuel cell assembly. Poorly performing cells call result in more frequent anode purging operations during operation of a cell, or can require special cell calibration techniques that are time consuming and expensive. Poorly performing cells limit the overall performance of a fuel cell stack which is generally strongly influenced by the weakest cell.
It is an object of the present invention to minimise problems associated with the formation of fluid flow channels in a fluid flow plate and/or problems arising from variations in performance of such fluid flow chapels from cell to cell.
It is a further object of the invention to increase the power density factor of a fuel cell stack by reducing the thickness of the anode field plate without significantly compromising power output.
According to one aspect, the present invention provides a fuel cell comprising:
According to another aspect, the present invention provides a fuel cell comprising:
Embodiments of the present invention will now be described by way of example and with reference to the accompanying drawings in which:
a) and 2(b) respectively show a simplified plan and sectional view of a fluid flow field plate of the fuel cell of
a shows a plan view of an anode configuration having a sheet of diffuser material positioned with respect to a sealing gasket and fluid entry and exit ports, and
The conventional designs of anode and cathode fluid flow plates incorporating fluid flow channels in the faces thereof have already been discussed in connection with
The present invention has recognised that certain types of porous diffuser materials can be used in conjunction with a pressure differential between inlet and outlet ports to ensure sufficient in-plane fluid transport within the diffuser that fluid transport to the entire surface of the membrane is possible without the use of fluid flow channels in the anode plate.
Referring to
The anode face of the MEA 40, the sealing gasket 41 and the anode plate 46 together define a fluid containment volume 47 between the fluid entry port 44 and the fluid exit port 45. The fluid containment volume is effected by the impermeability of the anode plate 46 and sealing gasket 41 together with limited permeability of the MEA (i.e. substantially allowing ion flow only). Within this containment volume 47 is laid a sheet of diffuser material 48. The sheet of diffuser material is cut to a shape which results in the foliation of one or more plenums 49, 50 defined between a lateral edge 51, 52 of the sheet 48 and the sealing gasket 41. More particularly, in the embodiment of
The anode plate 46 is preferably devoid of any grooves or channels 16 in its surface 52 facing the electrode 40 and diffuser sheet 48, since fluid transport can be effected entirely by way of the plenums 49, 50 and diffuser material 48 itself. This is illustrated in more detail with reference to
a illustrates fluid flow patterns during regular operation of the fuel cell. Inlet fluids arriving under pressure from entry port 44 are distributed along the inlet plenum 49 and into the body of the porous diffuser sheet 48 (and the underlying MEA 40) as indicated by the arrows. In this regular operation mode, the outlet plenum 50 need not take a part (although it can do so), since the essential function is to deliver fluid fuel to the active surface of the anode face of the MEA 40. Preferably, this is achieved such that adequate fuel supply reaches all active parts of the anode face of the MEA 40 so as to maintain the required power delivery from the cell without causing localised hot spots. However, this does not preclude the possibility that some small proportion of fuel or some by-product could be purged to the outlet plenum 50 and thus to the exit port 45 during regular operation of the fuel cell.
b illustrates fluid flow patterns during purge operation of the fuel cell. Inlet fluids arriving under pressure from entry port 44 are distributed along the inlet plenum 49 and through the body of the porous diffuser sheet 48 (and the underlying electrode 40) to the outlet plenum 50 and thus to the exit port 45, as indicated by the arrows. As will be understood by those familiar with fuel cell operation, regular switching of a fuel cell to a purge mode when performance of the fuel cell drops (e.g. because of build-up of water in the electrode) is often used as part of a system management strategy.
It is found that the ‘partial seal’ 53 formed between the lateral edge of the diffuser sheet 48 and the gasket 41 edge where the plenum is not formed is adequate to prevent significant leakage of fluid directly around the diffuser material from inlet plenum 49 to outlet plenum 50. For preference, the ‘partial seal’ is achieved by effecting a close fit or interference fit between the edge of the diffuser sheet 48 and the corresponding edge of the gasket 41. Some compression of the diffuser material during stack assembly may assist in formation of this partial seal.
The configuration of diffuser sheet 48 and sealing gasket 41 as shown in
a illustrates the pattern of
c illustrates a symmetric arrangement of inlet plenum 63 and outlet plenum 64, again relying on shaping of the sealing gasket 41 rather than the diffuser sheet 48 so that rectangular or square diffuser sheets may be used. In this configuration, inlet plenum 63 and outlet plenum 64 are balanced, having substantially equal lengths and in-plane fluid flow through the diffuser medium is generally from one end to the other.
d illustrates an arrangement similar to that of
e illustrates an arrangement in which a separate outlet plenum is not required. Only a single circumferential or peripheral plenum 67 is provided entirely surrounding the diffuser sheet 48. Purging of the plenum 67 is still possible using the exit port 45. Purging of the diffuser 48 and electrode 40 would be possible only to a lesser extent, relying on out-diffusion into the plenum 67 rather than forced diffusion by substantial pressure differential across the diffuser. This arrangement has particular application where anode purging is not normally required.
Thus, in a general sense, it will be understood that the sheet of porous diffuser material may have an irregular (non-rectangular) shape including recesses in its perimeter to thereby form the at least one plenum. Alternatively, the sheet of porous diffuser material may have a rectangular perimeter and the sealing gasket has an irregular (non-rectangular) shape including recesses in its internal perimeter to thereby form the at least one plenum.
This arrangement compartmentalises each anode half-cell in the fuel cell stack into separate fluid feed and purge areas which may afford a greater degree of uniformity of gas flows across large area anodes. In particular, the effects of any restriction on the diffusion rate of fluid across the electrode face between inlet and outlet plenums are minimised by limiting the area of the diffuser sheets 75, 76, 77 in this way.
In preferred embodiments, the MEA 40 is manufactured as a thin polymer layer sandwiched between electrode layers on either side, respectively forming the anode face and the cathode face. The faces of the MEA preferably comprise a central ‘active’ area surrounded by a peripheral area (or ‘frame’) which is reinforced to allow the formation of entry and exit polls (e.g. ports 44, 45 of
Where such a reinforced MEA is used, it is preferable that the peripheral plenums (e.g. 49, 50 and 61 to 67 of
All of the arrangements described above have been illustrated by reference to the anode side of a fuel cell (i.e. an anode half-cell). However, it will be understood that a corresponding cathode half-cell could utilise a similar half-cell structure as described in connection with
In a preferred embodiment, the cathode half-cell comprises a conventional ‘open cathode’ configuration in which the cathode is open to atmosphere for both oxygen supply, by-product exhaust and cell cooling. Preferably, the cathode is force vented (e.g. by fan) for delivering oxygen and cooling air and for expelling water vapour by-product.
Elimination of channels or grooves 16 in the anode plate 40 enables a substantial reduction in the thickness of the anode plate when compared with the fluid flow plate 14 (
It has also been found that the absence of channels 16 in an anode plate 14 reduces the plate area for which there is no direct electrical contact between the plate 14 and the electrode 12. In other words, there is almost 100% contact area between the anode plate and the diffuser material. In the prior art electrodes, any discontinuities in electrical contact between the anode plate and the electrode locally raises current densities between the channels.
The present invention enables avoidance of the non-contact areas of channels 16, consequently reducing ohmic losses as a result of reduced current densities generally across the area of the electrode.
Eliminating the need to form channels 16 in the anode plate 14 also simplifies manufacturing processes. It has been found to be much easier to cut to shape the sealing gasket 41 and/or the diffuser sheet 48 than to etch or stamp channels 16 into the anode plate 14.
In preferred arrangements, the fuel cell is a hydrogen fuel cell, in which the anode fluid fuel is gaseous hydrogen, the cathode fluid is air and the by-product exhaust is water vapour and oxygen-depleted air. The inlet fluid may also include other gases (e.g. for ballast, purge or membrane hydration). The use of an anode plate 40 without channels and reliant on gas distribution via the plenums 49, 50 and on in-plane diffusion within the diffuser material has been found to be most effective for transport of hydrogen gas to the catalyst sites of the electrode. High diffusivity rates of hydrogen and the low overpotential of the hydrogen oxidation reaction on catalyst sites are utilised.
In order to ensure a good supply of fluid fuel to the entire active surface of the anode electrode, it is advantageous to have a relatively high diffusivity of the anode gas through the diffuser sheet 48 compared with a relatively lower rate of diffusivity within the anode electrode 40 (and any backing layer 12a thereon).
The anode configuration works best when a significant pressure differential is maintained between the entry port 44 and the exit port 45 to give forced diffusion. This also is shown to reduce purging time.
Preferably, the diffuser material has axially-dependent permeability. In other words, gas transport rate in one in-plane direction may be different than gas transport rate in another in-plane direction. In this case, the diffuser sheets may be advantageously oriented such that the most effective and homogeneous gas transport between the plenums or from the inlet plenum to the central region of the diffuser sheet is effected. Diffuser materials may have an orientation of fibres (e.g. a woven mat) which provides this axial dependency, and the fibres can preferably be oriented in an ‘across-the-cell’ direction to assist with hydrogen transport to the centre of the half-cell. In addition, homogeneity of gas transport to the electrode may be improved when the in-plane diffusion rate of the diffuser material is higher than the cross-plane diffusion rate.
To ensure optimal diffusion rate across the diffuser material, it should not be significantly crushed or compressed during assembly of the fuel cell, i.e. when all the stack plates are compressed together to form the fuel cell assembly. Preferably, the sealing gasket 41 material is selected to be harder (less compressible) than the diffuser 48 material for this reason.
Suitable materials for use as the diffuser sheet 48 are gas diffusion media TGP-H grades of carbon fibre paper manufactured by Toray.
In preferred embodiments, the sealing gasket 41 has a thickness lying in the range 100 to 400 microns, and the diffuser sheet 48 has a thickness lying in the range 150 to 500 microns. In one preferred embodiment, the sealing gasket has a thickness of 225 microns, and the diffuser sheet has a thickness of 300 microns.
The distribution of anode gas using peripheral plenums and diffuser material as described above may also offer advantages in water management at the electrode. Build-up of water causes flooding of the electrode. In conventional fluid flow plate designs using channels in the plate, during flooding water pools at the edges of the active area of the electrode where it cools. There is little or no current generation at the edges of the active area, therefore no heat generation and the water remains stationary until a purge is performed.
By contrast, in the present invention, water pools towards the central region of the active area. This maintains hydration of the MEA but also has the effect of reducing current flow in the flooded areas. In adjacent active areas where the water has not pooled, there is higher current flow, more rapid depletion of hydrogen and therefore a region of lower pressure. The hydrogen and water both preferentially move to this region of lower pressure as a result of the pressure gradients, thereby reducing the localised flooding.
Other embodiments are intentionally within the scope of the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
0407979.4 | Apr 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2005/001346 | 4/7/2005 | WO | 00 | 1/30/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/099008 | 10/20/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5252410 | Wilkinson et al. | Oct 1993 | A |
5683828 | Spear et al. | Nov 1997 | A |
5858567 | Spear et al. | Jan 1999 | A |
5863671 | Spear et al. | Jan 1999 | A |
5945232 | Ernst et al. | Aug 1999 | A |
5952119 | Wilson | Sep 1999 | A |
6051331 | Spear et al. | Apr 2000 | A |
6117577 | Wilson | Sep 2000 | A |
6727014 | Wilson et al. | Apr 2004 | B1 |
6733915 | Barton et al. | May 2004 | B2 |
6858341 | Edlund | Feb 2005 | B2 |
7341800 | Sasahara et al. | Mar 2008 | B2 |
7432008 | Joos et al. | Oct 2008 | B2 |
7534465 | Sasahara et al. | May 2009 | B2 |
7569300 | Sasahara et al. | Aug 2009 | B2 |
7670699 | Sasahara et al. | Mar 2010 | B2 |
7700218 | Sasahara et al. | Apr 2010 | B2 |
7727665 | Sasahara et al. | Jun 2010 | B2 |
7754368 | Sasahara et al. | Jul 2010 | B2 |
20010033956 | Appleby et al. | Oct 2001 | A1 |
20020058180 | Beattie et al. | May 2002 | A1 |
20030157397 | Barton et al. | Aug 2003 | A1 |
20030219639 | Edlund | Nov 2003 | A1 |
20040016638 | LaConti et al. | Jan 2004 | A1 |
20040115513 | Yang | Jun 2004 | A1 |
20040151969 | Joos et al. | Aug 2004 | A1 |
20040224190 | Sasahara et al. | Nov 2004 | A1 |
20050048351 | Hood et al. | Mar 2005 | A1 |
20050106445 | Mitchell et al. | May 2005 | A1 |
20050175882 | Sasahara et al. | Aug 2005 | A1 |
20050175888 | Sasahara et al. | Aug 2005 | A1 |
20050181266 | Sasahara et al. | Aug 2005 | A1 |
20050202304 | Peace et al. | Sep 2005 | A1 |
20060040143 | Aoki et al. | Feb 2006 | A1 |
20060154130 | Hood | Jul 2006 | A1 |
20060257699 | Hood et al. | Nov 2006 | A1 |
20060292429 | Baird et al. | Dec 2006 | A1 |
20080102324 | Sasahara et al. | May 2008 | A1 |
20080102325 | Sasahara et al. | May 2008 | A1 |
20080124588 | Sasahara et al. | May 2008 | A1 |
20080124609 | Sasahara et al. | May 2008 | A1 |
20080145738 | Benson | Jun 2008 | A1 |
20080248336 | Matcham et al. | Oct 2008 | A1 |
20080314660 | Davies et al. | Dec 2008 | A1 |
20090004546 | Sasahara et al. | Jan 2009 | A9 |
20090029231 | Hood et al. | Jan 2009 | A1 |
20090035645 | Sasahara et al. | Feb 2009 | A9 |
20090136825 | Sasahara et al. | May 2009 | A9 |
Number | Date | Country |
---|---|---|
1 231 657 | Aug 2002 | EP |
08-031434 | Feb 1996 | JP |
10-106604 | Apr 1998 | JP |
01-197972 | Aug 1998 | JP |
2000-123850 | Apr 2000 | JP |
2002-216780 | Aug 2002 | JP |
2003-217615 | Jul 2003 | JP |
2002-047214 | Feb 2004 | JP |
2004-047214 | Feb 2004 | JP |
2005-528742 | Sep 2005 | JP |
301807 | Apr 1997 | TW |
2003-01582 | Jul 2003 | TW |
2004-04383 | Mar 2004 | TW |
581327 | Mar 2004 | TW |
WO0135477 | May 2001 | WO |
WO02101859 | Dec 2002 | WO |
WO03096453 | Nov 2003 | WO |
WO2004027910 | Apr 2004 | WO |
WO2005099008 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070166596 A1 | Jul 2007 | US |