This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2019-030754 filed on Feb. 22, 2019, the contents of which are incorporated herein by reference.
The present invention relates to a fuel cell metal separator and a fuel cell.
In general, a solid polymer electrolyte fuel cell employs a solid polymer electrolyte membrane. The solid polymer electrolyte membrane is a polymer ion exchange membrane. The fuel cell includes a membrane electrode assembly (MEA) including an anode provided on one surface of a solid polymer electrolyte membrane, and a cathode provided on the other surface of the solid polymer electrolyte membrane, respectively. The membrane electrode assembly is sandwiched between separators (bipolar plates) to form a power generation cell (unit fuel cell). In use, a predetermined number of power generation cells are stacked together to form, e.g., an in-vehicle fuel cell stack.
In each of the power generation cells, a fuel gas flow field as one of reactant gas flow fields is formed between the MEA and one of separators, and an oxygen-containing gas flow field as the other of the reactant gas flow fields is formed between the MEA and the other of the separators. Further, a plurality of reactant gas passages extend through the power generation cell in the stacking direction.
In some cases, in the power generation cell, as the separators, metal separators are used. For example, according to the disclosure of the specification of U.S. Pat. No. 8,371,587, as a seal, a ridge shaped bead seal is formed on a metal separator by press forming. The bead seal includes a passage bead provided around a reactant gas passage, etc., and an outer bead provided around the passage bead and the reactant gas flow field.
The present invention has been made in relation to the above conventional technique, and an object of the present invention is to provide a fuel cell metal separator and a fuel cell which make it possible to apply a uniform compression load to a bead seal.
According to a first aspect of the present invention, a fuel cell metal separator is provided. In the fuel cell metal separator, a reactant gas flow field is formed on one surface as a reaction surface of the fuel cell metal separator, the reactant gas flow field being configured to allow a fuel gas or an oxygen-containing gas as a reactant gas to flow through the reactant gas flow field, a fluid passage connected to the reactant gas flow field or a coolant flow field penetrating through the fuel cell metal separator in a separator thickness direction, a bead seal protruding from one surface of the fuel cell metal separator, the bead seal being configured to prevent leakage of the reactant gas or a coolant as fluid, the bead seal including a passage bead provided around the fluid passage and an outer bead provided around the reactant gas flow field, the fuel cell metal separator being stacked on a membrane electrode assembly, a tightening load in a stacking direction being applied to the fuel cell metal separator, wherein in a dual seal section where the passage bead and the outer bead extend next to each other, a ridge protruding from the one surface is formed integrally with the fuel cell metal separator, between the passage bead and the outer bead, and a height of the ridge is smaller than a height of the bead seal compressed by the tightening load.
According to a second aspect of the present invention, a fuel cell including a membrane electrode assembly and a fuel cell metal separator stacked on the membrane electrode assembly is provided. A reactant gas flow field is formed on one surface as a reaction surface of the fuel cell metal separator, the reactant gas flow field being configured to allow a fuel gas or an oxygen-containing gas as a reactant gas to flow through the reactant gas flow field, a fluid passage connected to the reactant gas flow field or a coolant flow field penetrating through the fuel cell metal separator in a separator thickness direction, a bead seal protruding from one surface of the fuel cell metal separator, the bead seal being configured to prevent leakage of the reactant gas or a coolant as fluid, the bead seal including a passage bead provided around the fluid passage and an outer bead provided around the reactant gas flow field, the fuel cell metal separator being stacked on the membrane electrode assembly, a tightening load in a stacking direction being applied to the fuel cell metal separator. In a dual seal section where the passage bead and the outer bead extend next to each other, a ridge protruding from the one surface is formed integrally with the fuel cell metal separator, between the passage bead and the outer bead, and a height of the ridge is smaller than a height of the bead seal compressed by the tightening load.
In the present invention, the ridge provided between the passage bead and the outer bead absorbs movement of a root of the bead seal to be displaced in a plane direction. Therefore, at the time of applying the tightening load, generation of rotational moment of the bead seal is suppressed. Accordingly, it becomes possible to apply a uniform compression load (seal pressure) to the bead seal, and obtain the desired sealing performance.
The above and other objects, features, and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings in which a preferred embodiment of the present invention is shown by way of illustrative example.
As shown in
At one end of the stack body 14 in the stacking direction indicated by the arrow A, a terminal plate (power collection plate) 16a is disposed. An insulator 18a is disposed outside the terminal plate 16a, and an end plate 20a is disposed outside the insulator 18a. At the other end of the stack body 14 in the stacking direction, a terminal plate 16b is disposed. An insulator 18b is disposed outside the terminal plate 16b, and an end plate 20b is disposed outside the insulator 18b. The insulator 18a (one of the insulators 18a, 18b) is disposed between the stack body 14 and the end plate 20a (one of the end plates 20a, 20b). The insulator 18b (the other of the insulators 18a, 18b) is disposed between the stack body 14 and the end plate 20b (the other of the end plates 20a, 20b). For example, each of the insulators 18a, 18b is made of polycarbonate (PC) or phenol resin.
Each of the end plates 20a, 20b has a laterally elongated (or a longitudinally elongated) rectangular shape, and coupling bars 24 are disposed between the sides of the end plates 20a, 20b. Both ends of each of the coupling bars 24 are fixed to inner surfaces of the end plates 20a, 20b, for applying a tightening load in the stacking direction (indicated by the arrow A) to the plurality of power generation cells 12 that are stacked together. It should be noted that the fuel cell stack 10 may include a casing including the end plates 20a, 20b, and the stack body 14 may be placed in the casing.
As shown in
The resin frame equipped MEA 28 includes a membrane electrode assembly 28a (hereinafter referred to as the “MEA 28a”), and a resin frame member 46 joined to an outer peripheral portion of the MEA 28a and provided around the outer peripheral portion. The MEA 28a includes an electrolyte membrane 40, an anode (first electrode) 42 provided on one surface of the electrolyte membrane 40, and a cathode (second electrode) 44 provided on the other surface of the electrolyte membrane 40.
For example, the electrolyte membrane 40 is a solid polymer electrolyte membrane (cation ion exchange membrane). For example, the solid polymer electrolyte membrane is a thin membrane of perfluorosulfonic acid containing water. The electrolyte membrane 40 is held between the anode 42 and the cathode 44. A fluorine based electrolyte may be used as the electrolyte membrane 40. Alternatively, an HC (hydrocarbon) based electrolyte may be used as the electrolyte membrane 40.
Though not shown in detail, the anode 42 includes a first electrode catalyst layer joined to one surface of the electrolyte membrane 40, and a first gas diffusion layer stacked on the first electrode catalyst layer. The cathode 44 includes a second electrode catalyst layer joined to the other surface of the electrolyte membrane 40, and a second gas diffusion layer stacked on the second electrode catalyst layer.
At one end of the power generation cell 12 (in a long side direction indicated by an arrow B (horizontal direction in
The oxygen-containing gas supply passage 34a is positioned between the two coolant discharge passages 36b that are positioned separately at upper and lower positions. The plurality of fuel gas discharge passages 38b includes an upper fuel gas discharge passage 38b1 and a lower fuel gas discharge passage 38b2. The upper fuel gas discharge passage 38b1 is positioned above the upper coolant discharge passage 36b. The lower fuel gas discharge passage 38b2 is positioned below the lower coolant discharge passage 36b.
At the other end of the power generation cell 12 in the direction indicated by the arrow B, a fuel gas supply passage 38a, a plurality of coolant supply passages 36a, and a plurality of (e.g., two as in the case of this embodiment) oxygen-containing gas discharge passages 34b (reactant gas discharge passages) are provided. The fuel gas supply passage 38a, the coolant supply passages 36a, and the oxygen-containing gas discharge passages 34b penetrate through the power generation cell 12 in the stacking direction. The fuel gas supply passage 38a, the coolant supply passages 36a, and the oxygen-containing gas discharge passages 34b penetrate through the stack body 14, the insulator 18a, and the end plate 20a in the stacking direction (the fuel gas supply passage 38a, the coolant supply passages 36a, and the oxygen-containing gas discharge passages 34b may penetrate through the terminal plate 16a). These fluid passages are arranged in the upper/lower direction (in a direction along the short side of the rectangular power generation cell 12).
The fuel gas is supplied through the fuel gas supply passage 38a. The coolant is supplied through the coolant supply passages 36a. The oxygen-containing gas is discharged through the oxygen-containing gas discharge passages 34b. The layout of the oxygen-containing gas supply passage 34a, the oxygen-containing gas discharge passages 34b, the fuel gas supply passage 38a, and the fuel gas discharge passages 38b are not limited to the illustrated embodiment, and may be determined as necessary depending on the required specification.
The fuel gas supply passage 38a is positioned between the two coolant supply passages 36a that are positioned separately at upper and lower positions. The plurality of oxygen-containing gas discharge passages 34b includes an upper oxygen-containing gas discharge passage 34b1 and a lower oxygen-containing gas discharge passage 34b2. The upper oxygen-containing gas discharge passage 34b1 is positioned above the upper coolant supply passage 36a, and the lower oxygen-containing gas discharge passage 34b2 is positioned below the lower coolant supply passage 36a.
As shown in
As shown in
The electrolyte membrane 40 may protrude outward without using the resin frame member 46. Alternatively, frame shaped films may be provided on both sides of the electrolyte membrane 40 which protrudes outward.
As shown in
An inlet buffer 50a having a plurality of bosses is provided between the oxygen-containing gas supply passage 34a and the oxygen-containing gas flow field 48 by press forming. An outlet buffer 50b having a plurality of bosses is provided between the oxygen-containing gas discharge passages 34b and the oxygen-containing gas flow field 48 by press forming.
A bead seal 51 is formed on the surface 30a of the first metal separator 30 by press forming. The bead seal 51 protrudes toward the resin frame equipped MEA 28. The bead seal 51 tightly contacts the resin frame member 46, and is deformed elastically by the tightening force in the stacking direction to provide seal structure for sealing a position between the bead seal 51 and the resin frame member 46 in an air tight and liquid tight manner. The bead seal 51 includes a plurality of passage beads 52 and an outer bead 53.
The plurality of passage beads 52 are provided around the oxygen-containing gas supply passage 34a, the oxygen-containing gas discharge passages 34b, the fuel gas supply passage 38a, the fuel gas discharge passages 38b, the coolant supply passages 36a, and the coolant discharge passages 36b, respectively. A bridge section 80 is provided in the passage bead 52 around the oxygen-containing gas supply passage 34a. The bridge section 80 has a plurality of tunnels 80t connecting the oxygen-containing gas supply passage 34a and the oxygen-containing gas flow field 48. A bridge section 82 is provided in each of the passage beads 52 around the oxygen-containing gas discharge passages 34b. The bridge section 82 has a plurality of tunnels 82t connecting the oxygen-containing gas discharge passages 34b and the oxygen-containing gas flow field 48.
The outer bead 53 is provided along the outer peripheral portion of the first metal separator 30, and provided around the oxygen-containing gas flow field 48, the oxygen-containing gas supply passage 34a, the two oxygen-containing gas discharge passages 34b, the fuel gas supply passage 38a, and the two fuel gas discharge passages 38b.
At one end of the first metal separator 30 in the longitudinal direction, the outer bead 53 extends in a serpentine pattern between the upper fuel gas discharge passage 38b1 and the upper coolant discharge passage 36b, between the upper coolant discharge passage 36b and the oxygen-containing gas supply passage 34a, between the oxygen-containing gas supply passage 34a and the lower coolant discharge passage 36b, and between the lower coolant discharge passage 36b and the lower fuel gas discharge passage 38b2. Therefore, at one end of the first metal separator 30 in the longitudinal direction, the outer bead 53 includes three expanded portions 53a, 53b, 53c expanded toward one of the short sides of the first metal separator 30, and provided partially around the upper fuel gas discharge passage 38b1, the oxygen-containing gas supply passage 34a, and the lower fuel gas discharge passage 38b2, respectively.
At the other end of the first metal separator 30 in the longitudinal direction, the outer bead 53 extends in a serpentine pattern between the upper oxygen-containing gas discharge passage 34b1 and the upper coolant supply passage 36a, between the upper coolant supply passage 36a and the fuel gas supply passage 38a, between the fuel gas supply passage 38a and the lower coolant supply passage 36a, and between the lower coolant supply passage 36a and the lower oxygen-containing gas discharge passage 34b2. Therefore, at the other end of the first metal separator 30 in the longitudinal direction, the outer bead 53 includes three expanded portions 53d, 53e, 53f expanded toward the other of the short sides of the first metal separator 30, and provided partially around the upper oxygen-containing gas discharge passage 34b1, the fuel gas supply passage 38a, and the lower oxygen-containing gas discharge passage 34b2.
As shown in
An inlet buffer 60a having a plurality of bosses are provided by press forming between the fuel gas supply passage 38a and the fuel gas flow field 58. An outlet buffer 60b having a plurality of bosses are provided by press forming between the fuel gas discharge passages 38b and the fuel gas flow field 58.
A bead seal 61 is formed on the surface 32a of the second metal separator 32 by press forming. The bead seal 61 protrudes toward the resin frame equipped MEA 28. The bead seal 61 tightly contacts the resin frame member 46, and is deformed elastically by the tightening force in the stacking direction to provide seal structure for sealing a position between the bead seal 61 and the resin frame member 46 in an air tight and liquid tight manner. The bead seal 61 includes a plurality of passage beads 62 and an outer bead 63.
The plurality of the passage beads 62 are provided around the oxygen-containing gas supply passage 34a, the oxygen-containing gas discharge passages 34b, the fuel gas supply passage 38a, the fuel gas discharge passages 38b, the coolant supply passages 36a, and the coolant discharge passages 36b, respectively. A bridge section 90 having a plurality of tunnels 90t is formed in the passage bead 62 around the fuel gas supply passage 38a. The tunnels 90t connect the fuel gas supply passage 38a and the fuel gas flow field 58. A bridge section 92 having a plurality of tunnels 92t is formed in each of the passage beads 62 around the fuel gas discharge passages 38b. The tunnels 92t connect the fuel gas discharge passages 38b and the fuel gas flow field 58.
The outer bead 63 is provided along the outer peripheral portion of the second metal separator 32, and provided around the fuel gas flow field 58, the oxygen-containing gas supply passage 34a, the oxygen-containing gas discharge passages 34b, the fuel gas supply passage 38a, and the fuel gas discharge passages 38b.
At one end of the second metal separator 32 in the longitudinal direction, the outer bead 63 extends in a serpentine pattern between the upper oxygen-containing gas discharge passage 34b1 and the upper coolant supply passage 36a, between the upper coolant supply passage 36a and the fuel gas supply passage 38a, between the fuel gas supply passage 38a and the lower coolant supply passage 36a, and between the lower coolant supply passage 36a and the lower oxygen-containing gas discharge passage 34b2. Therefore, at one end of the second metal separator 32 in the longitudinal direction, the outer bead 63 includes three expanded portions 63a, 63b, 63c expanded toward one of the short sides of the second metal separator 32, and provided partially around the upper oxygen-containing gas discharge passage 34b1, the fuel gas supply passage 38a, and the lower oxygen-containing gas discharge passage 34b2.
At the other end of the second metal separator 32 in the longitudinal direction, the outer bead 63 extends in a serpentine pattern between the upper fuel gas discharge passage 38b1 and the upper coolant discharge passage 36b, between the upper coolant discharge passage 36b and the oxygen-containing gas supply passage 34a, between the oxygen-containing gas supply passage 34a and the lower coolant discharge passage 36b, and between the lower coolant discharge passage 36b and the lower fuel gas discharge passage 38b2. Therefore, at the other end of the second metal separator 32, the outer bead 63 includes three expanded portions 63d, 63e, 63f expanded toward the other of the short sides of the second metal separator 32, and provided partially around the upper fuel gas discharge passage 38b1, the oxygen-containing gas supply passage 34a, and the lower fuel gas discharge passage 38b2.
In
In
As shown in
The two oxygen-containing gas discharge passages 34b and the two fuel gas discharge passages 38b are provided at four corner portions of the first metal separator 30 having the rectangular shape. The ridges 94 are provided at positions facing four corners 30k of the first metal separator 30 (corners on the marginal portion of the first metal separator 30).
Ridges 94a, 94c are provided between fluid passages at both ends among the five fluid passages provided at one end of the first metal separator 30 in the longitudinal direction (fuel gas discharge passages 38b) and the marginal portion (the long side and the short side) of the first metal separator 30. A ridge 94b is provided between a fluid passage at the center among the five fluid passages provided at one end of the first metal separator 30 in the longitudinal direction (oxygen-containing gas supply passage 34a) and the marginal portion (the short side) of the first metal separator 30.
Each of the ridges 94a, 94c extends along a part of the passage bead 52 around the fuel gas discharge passage 38b. The ridge 94b extends along a part of the passage bead 52 around the oxygen-containing gas supply passage 34a. The length of the ridges 94a, 94c by which the ridges 94a, 94c extend along the passage beads 52 around the fuel gas discharge passages 38b is larger than the length of the ridge 94b by which the ridge 94b extends along the passage bead 52 around the oxygen-containing gas supply passage 34a.
Ridges 94d, 94f are provided between fluid passages at both ends among the five fluid passages provided at the other end of the first metal separator 30 in the longitudinal direction (oxygen-containing gas discharge passages 34b) and the marginal portion (the long side and the short side) of the first metal separator 30. A ridge 94e is provided between a fluid passage at the center among the five fluid passages provided at the other end of the first metal separator 30 in the longitudinal direction (fuel gas supply passage 38a) and the marginal portion (the short side) of the first metal separator 30.
Each of the ridges 94d, 94f extends along a part of the passage bead 52 around the oxygen-containing gas discharge passage 34b. The ridge 94e extends along a part of the passage bead 52 around the fuel gas supply passage 38a. The length of the ridges 94d, 94f by which the ridges 94d, 94f extend along the passage beads 52 around the oxygen-containing gas discharge passages 34b is larger than the length of the ridge 94e by which the ridge 94e extends along the passage bead 52 around the fuel gas supply passage 38a.
As shown in
The two oxygen-containing gas discharge passages 34b and the two fuel gas discharge passages 38b are provided at four corner portions of the second metal separator 32 having the rectangular shape. The ridges 96 are provided at positions facing four corners 32k of the second metal separator 32 (corners on the marginal portion of the second metal separator 32).
Ridges 96a, 96c are provided between fluid passages at both ends among the five fluid passages provided at one end of the second metal separator 32 in the longitudinal direction (oxygen-containing gas discharge passages 34b) and the marginal portion (the long side and the short side) of the second metal separator 32. A ridge 96b is provided between a fluid passage at the center among the five fluid passages provided at one end of the second metal separator 32 in the longitudinal direction (fuel gas supply passage 38a) and the marginal portion (the short side) of the second metal separator 32.
Each of the ridges 96a, 96c extends along a part of the passage bead 62 around the oxygen-containing gas discharge passage 34b. The ridge 96b extends along a part of the passage bead 62 around the fuel gas supply passage 38a. The length of the ridges 96a, 96c by which the ridges 96a, 96c extend along the passage beads 62 around the oxygen-containing gas discharge passages 34b is larger than the length of the ridge 96b by which the ridge 96b extends along the passage bead 62 around the fuel gas supply passage 38a.
Ridges 96d, 96f are provided between fluid passages positioned at both ends among the five fluid passages provided at the other end of the second metal separator 32 in the longitudinal direction (fuel gas discharge passages 38b) and the marginal portion (long and short sides) of the second metal separator 32. A ridge 96e is provided between a fluid passage at the center among the five fluid passages provided at the other end of the second metal separator 32 in the longitudinal direction (oxygen-containing gas supply passage 34a) and the marginal portion (the short side) of the second metal separator 32.
Each of the ridges 96d, 96f extends along a part of the passage bead 62 around the fuel gas discharge passage 38b. The ridge 96e extends along a part of the passage bead 62 around the oxygen-containing gas supply passage 34a. The length of the ridges 96d, 96f by which the ridges 96d, 96f extend along the passage beads 62 around the fuel gas discharge passages 38b is larger than the length of the ridge 96e by which the ridge 96e extends along the passage bead 62 around the oxygen-containing gas supply passage 34a.
As shown in
A resin frame member 56 is fixed to each of the protruding front surfaces of the passage beads 52 and the outer bead 53 by printing or coating. A resin frame member 56 is fixed to each of the protruding front surfaces of the passage beads 62 and the outer bead 63 by printing or coating. It should be noted that the resin frame member 56 may be dispensed with.
Instead of the ridges 94, 96 having a trapezoidal shape in cross section, ridges 94T, 96T having a triangular shape in cross section as shown in
Operation of the fuel cell stack 10 having the above structure will be described below.
Firstly, as shown in
As shown in
In the meanwhile, as shown in
Thus, in each MEA 28a, the oxygen-containing gas supplied to the cathode 44 and the fuel gas supplied to the anode 42 are partially consumed in electrochemical reactions in the second electrode catalyst layer and the first electrode catalyst layer to perform power generation.
Then, the oxygen-containing gas supplied to the cathode 44 is partially consumed at the cathode 44, and then, the oxygen-containing gas is discharged along the oxygen-containing gas discharge passages 34b in the direction indicated by the arrow A. Likewise, the fuel gas supplied to the anode 42 is partially consumed at the anode 42, and then, the anode is discharged along the fuel gas discharge passages 38b in the direction indicated by the arrow A.
Further, the coolant supplied to the coolant supply passage 36a flows into the coolant flow field 66 formed between the first metal separator 30 and the second metal separator 32, and then, the coolant flows in the direction indicated by the arrow B. After the coolant cools the MEA 28a, the coolant is discharged from the coolant discharge passage 36b.
In this case, the embodiment of the present invention offers the following advantages.
As described in
As in a metal separator 100 according to a comparative example shown in
In contrast, as shown in
The present invention is not limited to the above described embodiment. Various modifications may be made without departing from the gist of the present invention.
The above embodiment is summarized as follows:
The embodiment of the present invention discloses the fuel cell metal separator (30, 32). In the fuel cell metal separator (30, 32), the reactant gas flow field (48, 58) is formed on one surface as a reaction surface of the fuel cell metal separator (30, 32), the reactant gas flow field being configured to allow a fuel gas or an oxygen-containing gas as a reactant gas to flow through the reactant gas flow field (48, 58), the fluid passage connected to the reactant gas flow field (48, 58) or the coolant flow field (66) penetrating through the fuel cell metal separator (30, 32) in a separator thickness direction, the bead seal (51, 61) protruding from one surface of the fuel cell metal separator, the bead seal being configured to prevent leakage of the reactant gas or a coolant as fluid, the bead seal (51, 61) including the passage bead (52, 62) provided around the fluid passage and the outer bead (53, 63) provided around the reactant gas flow field (48, 58), the fuel cell metal separator (30, 32) being stacked on a membrane electrode assembly (28a), a tightening load in a stacking direction being applied to the fuel cell metal separator (30, 32), wherein in a dual seal section where the passage bead (52, 62) and the outer bead (53, 63) extend next to each other, the ridge (94, 96) protruding from the one surface is formed integrally with the fuel cell metal separator (30, 32), between the passage bead (52, 62) and the outer bead (53, 63), and the height of the ridge (94, 96) is smaller than the height of the bead seal (51, 61) compressed by the tightening load.
The fluid passage may be disposed at a corner portion of the fuel cell metal separator (30, 32) having a rectangular shape, and the ridge (94, 96) may be provided at a position facing the corner (30k, 32k) of the fuel cell metal separator (30, 32).
The ridge (94, 96) may extend along a part of the passage bead (52, 62) provided around the fluid passage as a passage of the reactant gas.
The fluid passage may comprise five fluid passages provided at one end of the fuel cell metal separator (30, 32) and arranged in a width direction of the reactant gas flow field (48, 58) and the ridge (94, 96) may be provided at each of positions between fluid passages at both ends among the five fluid passages and a marginal portion of the fuel cell metal separator (30, 32), and at a position between a fluid passage at the center among the five fluid passages and the marginal portion of the fuel cell metal separator (30, 32).
The fluid passage may comprise five fluid passages provided at one end of the fuel cell metal separator (30, 32) and arranged in a width direction of the reactant gas flow field (48, 58), the ridge may comprise a plurality of the ridges (94, 96), the length of each of the ridges (94, 96) by which the ridges extend between the fluid passages at both ends of the five fluid passages and the marginal portion of the fuel cell metal separator (30, 32) may be larger than the length of the ridge (94, 96) by which the ridge (94, 96) extends between the fluid passage at the center of the five fluid passages and the marginal portion of the fuel cell metal separator (30, 32).
Further, the above embodiment discloses the fuel cell (12) including the membrane electrode assembly (28a) and the fuel cell metal separator (30, 32) stacked on the membrane electrode assembly (28a). The reactant gas flow field (48, 58) is formed on one surface as a reaction surface of the fuel cell metal separator (30, 32), the reactant gas flow field being configured to allow a fuel gas or an oxygen-containing gas as a reactant gas to flow through the reactant gas flow field (48, 58), the fluid passage connected to the reactant gas flow field (48, 58) or the coolant flow field (66) penetrating through the fuel cell metal separator in a separator thickness direction, the bead seal (51, 61) protruding from one surface of the fuel cell metal separator, the bead seal being configured to prevent leakage of the reactant gas or a coolant as fluid, the bead seal (51, 61) including the passage bead (52, 62) provided around the fluid passage and the outer bead (53, 63) provided around the reactant gas flow field (48, 58), the fuel cell metal separator (30, 32) being stacked on a membrane electrode assembly (28a), a tightening load in a stacking direction being applied to the fuel cell metal separator (30, 32). In a dual seal section where the passage bead (52, 62) and the outer bead (53, 63) extend next to each other, the ridge (94, 96) protruding from the one surface is formed integrally with the fuel cell metal separator (30, 32), between the passage bead (52, 62) and the outer bead (53, 63), and the height of the ridge (94, 96) is smaller than the height of the bead seal (51, 61) compressed by the tightening load.
Number | Date | Country | Kind |
---|---|---|---|
2019-030754 | Feb 2019 | JP | national |