1. Field of the Invention
The invention relates to a fuel cell stack with fuel cells, a clamping device and a heat insulating device, the clamping device having pressure distribution elements and the fuel cells being located between the pressure distribution elements.
2. Description of Related Art
Fuel cells have an ion-conducting electrolyte with which contact is made on both sides via two electrodes, anode and cathode. The anode is supplied with a reducing, generally hydrogen-containing fuel, and an oxidizer, for example, air, is supplied to the cathode. The electrons released in the oxidation of the hydrogen contained in the fuel on the electrode are routed to the other electrode via an external load circuit. The chemical energy being released is thus available to the load circuit with high efficiency directly as electrical energy.
To achieve higher outputs, several planar fuel cells are often layered on top of one another in the form of a fuel cell stack and are electrically connected in series. This fuel cell stack is held together by forces of pressure, the forces of pressure being applied by a clamping device. The clamping device comprises pressure distribution elements which are connected to one another in a suitable manner and by which the compression forces produced by the clamping device are applied uniformly to the fuel cell stack. The stacked fuel cells and the clamping device are then surrounded by a heat insulating device to reduce heat losses to the outside.
Fuel cells are, for example, made as low temperature fuel cells, such as, for example, a PEMFC (polymer electrolyte membrane fuel cell) with operating temperatures of roughly 100° C. This has the advantage that suitable materials for the clamping device in this temperature range are available. Moreover, there are high temperature fuel cells, especially a solid oxide fuel cell (SOFC) which is operated at temperatures above 800° C. In this temperature range, many materials have no permanently elastic action since the applied prestressing forces are consumed by creep processes. Moreover, the materials used for the clamping device generally have a larger coefficient of thermal expansion than the stack of fuel cells. Moreover recrystallization effects occur in the metals used for the clamping device, by which they become soft.
To avoid these problems, it is provided in accordance with the invention that a heat insulating device is located between the fuel cells and the clamping device.
The basic idea of the invention is that, in this arrangement, all tension-loaded elements of the clamping device and all elastic elements are located in a cold region outside of the heat insulation.
Advantageously, the clamping device has tension elements which are made of rod, cable, wire, chain, belt or fiber material. Thus, much less material can be used for the tension elements than is conventional in the prior art. It is especially favorable if the tension elements are made of a lightweight metal, such as, for example, aluminum. This leads both to cost savings and also to a reduction of the volume and weight of the fuel cell stack.
Furthermore, in accordance with the invention, the fuel cell system is provided with an energy-producing unit, the energy-producing unit comprising a reformer, a fuel cell stack with fuel cells and an afterburning unit, the fuel cell system also having a clamping device with pressure distribution elements and a heat insulating device, and the energy-producing unit being located between the pressure distribution elements, the heat insulating device being located between the energy-producing unit and the clamping device. In this arrangement of an energy-producing unit, all tension-loaded elements of the clamping device and all elastic elements are located in the cold region outside of the heat insulation.
The invention is explained in detail below with reference to the accompanying drawings.
a & 4b are cross sections through a fuel cell stack of a fourth embodiment of the invention,
a & 5b are cross sections through a fuel cell stack of a fifth embodiment of the invention,
The tension elements 20 can be made here as a bar, cable, wire, chain, belt or fiber material, so that much less material need be used as compared to the prior art, and thus, a lighter and more space-saving construction can be achieved. It is especially preferred if the tension elements 20 are made of a lightweight metal, for example, aluminum. The weight of the fuel cell stack 10 is thus clearly reduced.
The spring elements 22 can be made as helical springs, disk springs, leg springs, cable-pull springs or pneumatic springs, and especially elastomers can be used as the material. Since both the tension elements 20 and also the spring elements 22 are outside of the heat insulating device 14, they are only exposed to lower temperatures. For these elements 20, 22, thus, less temperature-resistant and also more economical materials can be used than in prior art devices, where these elements are located within the heat insulating device 14, and thus, are exposed to much higher temperatures. Moreover, the outside arrangement of the clamping device 16 results in that the heat losses of the fuel cell stack 10 are altogether much less since no parts of the clamping device 16 are routed out of the hot region into the cold region.
The heat insulating elements 14a to 14d of the heat insulating device 14 can be made in one especially preferred embodiment either as a monolayer of microporous insulating materials, sandwich structure or of a composite material. These heat insulating elements have an especially pressure-resistant structure so that the pressures built up by the clamping device 16 can be captured especially well.
In the fuel cell stack 10 shown in
The heat insulating device 14 of the fuel cell stack 10 shown in
The embodiments of the fuel cell stack 10 shown in
In the embodiment of
In the embodiment of
Finally,
The described embodiments of the fuel cell stack 10 and of the fuel cell system 26 are especially suited for use with solid oxide fuel cells which are operated at temperatures from 800 to 900° C. In particular, in such a high temperature system, the described materials and components exhibit their advantages with respect to volume and weight reduction, and thus, cost reduction.
A process will be described below which allows especially simple changing of the fuel cells 12 and the heat insulating device 14.
In a first step, the spring elements 22 must be loosened. Then, the pressure distribution elements 18 can be separated from the tension elements 20. It is now possible, either by removing the heat insulating device 14 from the fuel cell stack 10 or from the fuel cell system 26, to replace the fuel cells 12 (and optionally, the reformer 28 and the afterburning unit 30) alone or in combination together with the heat insulating device 14. After replacement, the pressure distribution elements 18 are connected to the tension elements 20. Then, by attaching the spring elements 22, the entire fuel cell stack 10 and fuel cell system 26 are joined together under tension.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 037 678.6 | Aug 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE05/01286 | 7/20/2005 | WO | 2/2/2007 |