This application is based upon and claims the benefit of priority from Japanese patent application No. 2009-83778, filed on Mar. 30, 2009, the disclosure of which is incorporated herein in its entirety by reference.
The present invention relates to a fuel cell stack, a fuel cell, and a method of manufacturing a fuel cell stack.
Reduction in size and weight of a polymer electrolyte fuel cell using liquid fuel can be readily made. Therefore, nowadays, research and development are advanced for application of the polymer electrolyte fuel cell as a power source to various types of electronic devices such as portable devices.
The polymer electrolyte fuel cell is provided with a cell including a structure in which a solid polymer electrolyte membrane is held between an anode and a cathode. A fuel cell of a type of directly supplying liquid fuel to the anode is referred to as a direct type fuel cell. An electric power generation mechanism thereof is as follows. The liquid fuel supplied to the anode is decomposed on a catalyst supported by the anode. Due to this decompose, protons (cations), electrons, and intermediate products are generated. The generated protons (cations) pass through the solid polymer electrolyte membrane to a cathode side. The generated electrons move to the cathode side through an external load. Then, the protons and the electrons react with oxygen in the atmosphere at the cathode to generate a reaction product. This reaction allows the fuel cell to generate electric power. An example of the fuel cell includes a direct methanol fuel cell (hereinafter to be referred to as a DMFC) that directly uses an aqueous methanol solution as the liquid fuel. In the DMFC, the reaction represented by the following chemical formula (I) occurs at the anode and the reaction represented by the following chemical formula (II) occurs at the cathode.
CH3OH+H2O→CO2+6H++6e− (I)
6H++6e−+3/2O2→3H2O (II)
An electric power-generating site of a polymer electrolyte fuel cell includes an electric power-generating minimum unit, which is called a cell, as a basic component. The electric power-generating site is configured of a fuel cell stack in which the cells are electrically connected. This fuel cell stack is mounted to a structure that supplies fuel or extracts electric power. In this manner, the polymer electrolyte fuel cell can be used as a power source. In the polymer electrolyte fuel cell, for example, according to required voltage, plural cells are connected to configure a fuel cell stack.
Such fuel cell is used as a stationary external battery charger or a power source of small devices such as cell-phones and the like, for example. In such intended use, since it is mainly used away from home, a smaller fuel cell is required. Therefore, a power collector for collecting electric power extracted by the cell is usually used. This power collector is fixed to the fuel cell with relatively weak force such as screw. Further, in view of efficiently utilizing oxygen in the atmosphere at the cathode and efficiently utilizing water and methanol in the fuel at the anode, it is preferable that a contact section between the power collector and the cathode and the anode is as small as possible. Therefore, the power collector preferably holds a limited part of the cell.
An example of a method for reducing the size of the fuel cell includes a method in which a power collector is omitted or downsized. As such methods, a method in which an anode and a cathode of two or more cells are connected only through a metallic rivet (Japanese Patent Application Laid-open No. 2008-177047 and WO05/45970), a method in which a power collector (connector) is connected to an anode and a cathode of two or more cells by resistance welding, and the anode and the cathode are connected through the power collector (connector) (Japanese Patent Application Laid-open No. 2007-273433), and a method in which electrodes and a power collector such as a terminal (tab) is connected by resistance welding (Japanese Patent Application Laid-open Nos. 2005-5077 and 2006-107868) have been proposed.
An exemplary object of the invention is to provide a fuel cell stack that includes a simple structure, suppresses increase in connection resistance at a connection site of a cathode and an anode, and achieves high connection intensity at the connection site; fuel cell; and a method of manufacturing a fuel cell stack.
According to an exemplary aspect of the invention, a fuel cell stack includes two or more cells including a solid polymer electrolyte membrane; a porous metallic cathode; and a porous metallic anode, wherein the cathode is arranged on one surface of the solid polymer electrolyte membrane through a catalyst layer, the anode is arranged on the other surface of the solid polymer electrolyte membrane through a catalyst layer, and the two or more cells are connected in an electrically conductive manner by resistance welding of the cathode of one of the cells and the anode of the other one of the cells with a conductive metallic foil interposed therebetween.
According to another exemplary aspect of the invention, a fuel cell includes the fuel cell stack; and a fuel supply portion, the fuel supply portion including a fuel container; and a gas-liquid separation membrane, wherein the fuel supply portion is arranged at an anode side of the fuel cell stack through the gas-liquid separation membrane, and gaseous fuel is supplied from the fuel supply portion to the anode through the gas-liquid separation membrane.
According to yet another exemplary aspect of the invention, a method of manufacturing a fuel cell stack includes providing two or more cells, the two or more cells including a solid polymer electrolyte membrane; a porous metallic cathode; and a porous metallic anode, the cathode being arranged on one surface of the solid polymer electrolyte membrane through a catalyst layer, and the anode being arranged on the other surface of the solid polymer electrolyte membrane through a catalyst layer; and connecting the two or more cells in an electrically conductive manner by resistance welding of the cathode of one of the cells and the anode of the other one of the cells with a conductive metallic foil interposed therebetween.
Hereinafter, a fuel cell stack, a fuel cell, and a method of manufacturing a fuel cell stack of the present invention will be described in detail. However, the present invention is not limited to the following exemplary embodiments.
A structure of an example of a fuel cell stack of a first exemplary embodiment is shown in
As the solid polymer electrolyte membrane, for example, one with high proton conductivity and without electron conductivity is preferable. As a constituent material of the solid polymer electrolyte membrane, it is preferable to use an ion-exchange resin including a polar group such as a strong acid group such as a sulfonic acid group, a phosphoric acid group, a phosphonic group, a phosphine group, and the like; or a weak acid group such as a carboxyl group and the like. Specific examples of the ion-exchange resin include perfluorosulfonic acid resin, sulfonated polyether sulfonic acid resin, sulfonated polyimide resin, sulfonated poly(4-phenoxybenzoyl-1,4-phenylene), sulfonated polyether ether ketone, sulfonated polyethersulfone, sulfonated polysulphone, sulfonated polyimide, alkyl sulfonated polybenzimidazole, and the like. The thickness of the solid polymer electrolyte membrane is not particularly limited and can be defined suitably according to intended use of the fuel cell or the material. The thickness of the membrane is, for example, in the range of about 5 μm to about 300 μm.
Examples of a material of the catalyst layer (hereinafter to be referred to as a catalyst material) include platinum, rhodium, palladium, iridium, osmium, ruthenium, rhenium, gold, silver, nickel, cobalt, molybdenum, lanthanum, strontium, yttrium, and the like. One of the catalyst materials may be used alone or two or more of them may be used in combination. The catalyst material is, for example, in the form of particle. The catalyst layer can be formed, for example, by applying particles (including powders) of the catalyst material supported by a supporter or particles of the catalyst material not supported by the supporter onto an electrode. The amount of the catalyst the range of about 0.1 mg/cm2 to about 20 mg/cm2 according to the type of the catalyst material or the size of the particles, for example. Examples of the supporter include particles of carbon-based material such as acetylene black, ketjen black, carbon nanotube, carbon nanohorn, and the like. The particle diameter of the carbon-based material is, for example, in the range of about 0.01 μm to about 0.1 μm, and is preferably in the range of about 0.02 μm to about 0.06 μm. A method of supporting the catalyst material by the supporter is not particularly limited, and an impregnation method can be applied, for example.
As represented by the formula (II), the cathode is, an electrode that reduces oxygen to water. The cathode is porous metal and has conductivity. As represented by the formula (I), the anode is, for example an electrode that generates protons (cations; H+), carbon dioxide (CO2), and electrons (e−) from an aqueous methanol solution and water. The material, form, and the like of the anode are not particularly limited and are similar to those of the cathode, for example. Since the cathode and the anode are porous metal, fuel can be diffused. Examples of the metal include stainless, copper, gold, silver, aluminum, and the like. The form of the cathode is not particularly limited and the cathode is, for example, in the form of foil or in the form of sheet having the thickness in the range of about 0.05 mm to about 3.0 mm. The foil-like or sheet-like cathode is formed, for example, by entwining fibrous metallic wires having the wire diameter in the range of about 0.01 mm to about 2.0 mm. The cathode and the anode may be formed by suitably selecting the material and form as long as they are porous bodies including a space in which fuel can be diffused. The porosity of the cathode and the anode is, for example, in the range of about 5% to about 95%, is preferably in the range of about 50% to about 95%, and is more preferably in the range of about 70% to about 90%.
When the cathode and the anode are welded by resistance welding with the conductive metallic foil interposed therebetween, the cathode and the anode are connected. For example, if there is the press sign of an electrode for resistance welding in the cathode and the anode, it is understood that the cathode and the anode are connected by resistance welding. The specific resistance of the conductive metallic foil is preferably smaller than at least one of the specific resistance of the cathode and the specific resistance of the anode. This will make it possible to reduce the whole connection resistance between the cathode and the anode. As the conductive metallic foil, a foil of gold, silver, copper, aluminum, stainless, or their alloy can be used. Among them, a gold foil or a foil of alloy including gold as a main component is particularly preferable because it is small in an electric resistance value, excellent in ductility, and high in corrosion resistance.
Next, on the bases of
First, a process of providing the cells is explained. As shown in
Next, a process of connecting the cells is explained. As shown in
As described above, the conductive metallic foil is sandwiched between the cathode and the anode. Therefore, the thickness thereof is preferably about 1 mm or shorter. The conductive metallic foil includes one with thickness (conductive metallic plate). The conductive metallic foil may have the size (width and length) in which the cathode and the anode are not directly in contact with each other, or may have the length protruding from one end of the cells as long as the cells do not short out. Alternatively, the conductive metallic foil may be arranged only on a site between the cathode and the anode in which a resistance welding site is formed.
Further, at the time of resistance welding, it is not necessary that the conductive metallic foil itself is melted and fused with an electrode material. It is applicable as long as creation of holes due to electrode collapse can be prevented and electric resistance can be reduced.
The fuel cell stack of the first exemplary embodiment can be manufactured by the aforementioned method of manufacturing the fuel cell stack. However, a method of manufacturing the fuel cell stack of the first exemplary embodiment is not limited to the aforementioned method of manufacturing the fuel cell stack.
The fuel cell stack of the first exemplary embodiment may further be provided with a terminal for extracting electric power, for example. A structure of an example of this fuel cell stack is shown in
The terminal is preferably in contact with a cathode of the highest voltage and an anode of the lowest voltage. The material, form, structure, and the like of the terminal are not particularly limited. For example, a terminal, which is small in an electric resistance value and high in corrosion resistance, may be used.
The fuel cell stack of the first exemplary embodiment may be provided with three or more cells. A structure of an example of such fuel cell stack is shown in
A structure of an example of a fuel cell of a second exemplary embodiment is shown in
The material, form, structure, and the like of the fuel supply portion are not particularly limited. In consideration of leak of the liquid fuel, for example, the fuel supply portion includes a structure in which the fuel container, which includes an opening at one surface of a cuboid, is applied with the gas-liquid separation membrane at the opening thereof with a thermocompression tape. Preferably, an area of the opening of the fuel container is approximately equal to an area in which catalyst layers of the anodes 14a and 14b are formed.
The material of the gas-liquid separation membrane is not particularly limited, and is applicable as long as liquid fuel in the fuel container can be transmitted in the vaporized form. For example, a hydrophobic PTFE porous membrane, a hydrophilic electrolyte membrane for filter), or the like can be used as the gas-liquid separation membrane.
Examples of the liquid fuel include alcohol fuel such as methanol, ethanol, and the like; ether fuel such as dimethyl ether, diethyl ether, and the like; and the like. The fuel cell of the second exemplary embodiment is, for example, a direct methanol fuel cell that directly uses an aqueous methanol solution as the liquid fuel. The liquid fuel is supplied to the anode in the vaporized form through the gas-liquid separation membrane.
For example, a fuel retention material, which is called a wicking material, may be inserted into the fuel container. The wicking material is used mainly in aim of absorbing and retaining liquid fuel by capillary action and supplying fuel to an anode. The wicking material is not particularly limited and examples thereof include woven, nonwoven, fibrous mat, fibrous web, expandable polymer, and the like. Among them, expandable materials of a polymer-based material such as urethane, PVF material, and the like are particularly preferable.
The fuel cell of the second exemplary embodiment may further be provided with a moisture retention layer, which contains fibrous nonwoven, and a plate member, which includes plural pores, for example. A structure of an example of such fuel cell is shown in
The moisture retention layer is applicable as long as it includes fibrous nonwoven that can moderately retain or release moisture and does not hinder diffusion of gas containing oxygen to cathodes during electric power generation. For example, cellulose nonwoven is suitable for the moisture retention layer.
For example, a metallic plate such as aluminum, which is applied with anticorrosion treatment with paint at the surface thereof, is suitable for the plate member. The opening diameter and aperture ratio of the pores are not particularly limited.
A method of manufacturing the aforementioned fuel cell is not particularly limited. The aforementioned fuel cell can be manufactured by manufacturing the aforementioned fuel cell stack by the aforementioned method of manufacturing the fuel cell stack, and mounting the aforementioned fuel cell stack to the fuel supply portion using a conventionally known method.
An example of the present invention is explained together with a reference example. The present invention is neither specified nor limited by the following example or reference example.
A fuel cell shown in
First, catalyst supporting carbon fine particles in which platinum fine particles having the particle diameter in the range of 3 to 5 nm were supported by carbon particles (“Ketjen Black EC 600 JD” (trade name), manufactured by Lion Corporation) were provided. The amount of the platinum fine particles was 50% by weight. To 1 g of the catalyst supporting carbon fine particles, 5% by weight of NAFION® dispersion solution (product No. “DE521”, manufactured by DUPONT) was added and stirred. Thereby, a catalyst paste for forming cathode was obtained. On the other hand, a porous metallic sheet (made of stainless, size of 4.2 cm×4.0 cm, thickness of 0.2 mm, and porosity of 80%) was provided. Short sides of the porous metallic sheet were covered with tapes having the width of 0.2 cm and thereby a catalyst application area of 4.0 cm×4.0 cm was formed. On a hot plate, which was set at a temperature equal to or lower than a glass-transition temperature of NAFION® contained in the catalyst paste, this porous metallic sheet was placed and heated. In this state, the catalyst paste was applied to the porous metallic sheet with an application amount of 1 to 8 mg/cm2. In this manner, a cathode 13a provided with a catalyst layer 15a was prepared.
An anode 14a provided with a catalyst layer 16a was prepared in the same manner as the cathode except that platinum (Pt)-ruthenium (Ru) alloy fine particles (proportion of Ru being 50 at %) having the particle diameter in the range of 3 to 5 nm were used instead of the platinum fine particles, and the amount of the NAFION® dispersion solution added to the catalyst supporting carbon fine particles was ¾ of the NAFION® dispersion solution used in the preparation of the cathode.
As a solid polymer electrolyte membrane 12a, “NAFION® 117” (trade name), manufactured by DUPONT (average molecular weight of 250000, size of 4.5 cm×4.5 cm, and thickness of 180 μm) was provided.
The cathode 13a was arranged on one surface of the solid polymer electrolyte membrane 12a in such a manner that the surface of the cathode 13a on which a catalyst layer 15a was not provided faced outward. The anode 14a was arranged on the other surface of the solid polymer electrolyte membrane 12a in such a manner that the surface of the anode 14a on which a catalyst layer 16a was not provided faced outward. Pressure was added from the outside of each electrode by hot pressing in a condition where surfaces of the electrodes on which catalyst layers were provided were faced to each other through the solid polymer electrolyte membrane 12a. At this time, parts of the electrode on which catalyst layers were not provided were placed at opposite sides. A part of the solid polymer electrolyte membrane 12a protruded from the surface of the electrodes on which the catalyst layers were provided was cut off by leaving about 0.2 mm. Alternatively, the part of the solid polymer electrolyte membrane 12a protruded from the surface of the electrodes was cut off 0.2 mm or shorter as required. In this manner, the cell 11a was prepared. The cell lib was prepared in the same manner as the cell 11a.
First, the cells 11a and 11b were arranged such that the cathode 13a of the cell 11a and the anode 14b of the cell lib were overlapped about 1.5 mm. A ribbon-like gold foil 17 (size of 1.3.mm×4.0 cm, and thickness of 0.1 mm) was sandwiched between the cathode 13a and the anode 14b. With respect to a part in which the gold foil was sandwiched, using an electrode having a circular cross-section (diameter size of 0.7 mm), punctate resistance welding sites were formed in line, and the cathode 13a and the anode 14b were welded by resistance welding. In this manner, a fuel cell stack 10 was prepared.
A container (outer size of 8.5 cm×4.5 cm×0.7 mm, and thickness of 0.2 mm) made of polyether ether ketone (PEEK) having an opening at the maximum surface was provided as a fuel container 52. A porous membrane (thickness of 50 μm, and porosity of 90%) made of PTFE was provided as a gas-liquid separation membrane 54. The gas-liquid separation membrane 54 was applied to the opened surface of the fuel container 52 through adhesion tapes 55. In this manner, a fuel supply portion 51 which can store liquid fuel without leaking was prepared. The fuel supply portion 51 was filled with 10% by volume of aqueous methanol solution 53.
The fuel cell stack 10 was mounted to the fuel supply portion 51 in such a manner that the surface of the fuel cell stack 10 at the side of the anodes 14a and 14b were placed on the gas-liquid separation membrane 54. On the both cathodes 13a and 13b of the cells 11a and 11b, cellulose nonwovens (size of 4.0 cm×4.0 cm, thickness of 0.2 mm) were arranged as moisture retention layers 61a and 61b. On the upper surfaces of the moisture retention layers 61a and 61b, an aluminum perforated plate (outer size of 8.5 cm×4.5 cm×0.7 mm, and porosity of 50%) was placed as a plate member 62. All these components were fixed with shredded tapes so as to be a single member. In this manner, a fuel cell 60 was prepared.
As shown in
Each fuel cell of the first example and the reference example was attached with an external circuit. In this state, electric power generation was performed. The following electric power generation properties in each fuel cell were measured or calculated. Specifically, the maximum power of the fuel cell was measured by monitoring current values in a condition where the voltage was swept from an open voltage to 0V at 5 mV/sec. Further, after measurement of the maximum power, series resistance was measured by performing impedance determination. Maximum power density values converted from the maximum power and measurement values of the series resistance are summarized in Table 1. Furthermore, changes in voltage and fuel consumption rate at constant current of 30 mA/cm2, 60 mA/cm2, and 90 mA/cm2 were measured. However, in each current condition, electric power generation was stopped when the voltage became 400 mV, 300 mV, and 200 mV. Measurement results of the voltage and the fuel consumption rate are summarized in Table 2.
As summarized in Table 1, the maximum power density of the fuel cell of the first example is about 20% higher than that of the fuel cell of the reference example. Further, the series resistance of the fuel cell of the first example is about 25% lower than that of the fuel cell of the reference example. These results show that resistance loss at a resistance welding site was improved by configuring the fuel cell as described above, and power output was thereby improved.
As summarized in Table 2, in any constant current condition, the voltage of the fuel cell of the first example was higher than that of the fuel cell of the reference example at a given time. Particularly in higher current, marked difference was observed. Further, in any constant current condition, the fuel cell of the first example showed better result in fuel consumption rate than the fuel cell of the reference example. That is, it was found that the fuel cell of the first example was high in power output and long in electric power generation time, and could suppress fuel consumption. These results show that power output was improved and fuel vaporization at a resistance welding site was suppressed by configuring the fuel cell as described above.
Accordingly, as shown in examples, it can be found that fuel cell performance is improved by configuring the fuel cell as described above. Particularly, it can be found that the fuel cell configured as described above are effective in reduction of resistance between cells and can obtain suppression effect of fuel vaporization.
The related art described in the background art causes a problem such as complexity of the structure of the fuel cell stack, limitation of the size of the fuel cell stack, or the like because it is provided with the aforementioned rivet, the power collector, or the like. In order to solve such problem, for example, there is a method in which a part of an anode and a part of a cathode of two or more cells are directly welded by resistance welding or the like. In a case where a carbon sheet is used as an electrode of the cell, it is difficult to weld the electrode itself by resistance welding or the like. Therefore, it is preferable that the material of the anode and the cathode of the fuel cell is metallic fibrous mat, porous metal, or the like, which can be welded by the resistance welding. However, when electrodes made of such material are directly welded by the resistance welding, a connection area is limited. Therefore, as compared to a case in which flat plates are welded by the resistance welding or the like, connection resistance at a connection site may be increased, and the connection site may be damaged due to low connection intensity.
An exemplary advantage according to the invention is to provide a fuel cell stack that has a simple structure, suppresses increase in connection resistance at a connection site of a cathode and an anode, and achieves high connection intensity at the connection site. The fuel cell stack having such excellent performance can be manufactured by the aforementioned method of manufacturing the fuel cell stack. However, a method of manufacturing the aforementioned fuel cell stack is not limited to the aforementioned method of manufacturing the fuel cell stack.
The aforementioned fuel cell stack includes a simple structure, suppresses increase in connection resistance at a connection site of a cathode and an anode, and is high in connection intensity at the connection site. Therefore, examples of the use of the aforementioned fuel cell provided with the aforementioned fuel cell stack include a power source of small devices such as cell-phones, notebook computers, and the like; stationary external battery chargers; household power sources; industrial power sources used in factories; and the like. However, the use thereof is not particularly limited and is applicable over a wide range of fields.
While the invention has been particularly shown and described with reference to exemplary embodiment thereof, the invention is not limited to these embodiments. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from spirit and scope of the present invention as defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
83778/2009 | Mar 2009 | JP | national |