This invention relates generally to fuel cells and in particular to an improved support structure for the fuel cells.
In general, a solid oxide fuel cell (SOFC) comprises a pair of electrodes (anode and cathode) separated by a ceramic, solid-phase electrolyte. To achieve adequate ionic conductivity in such a ceramic electrolyte, the SOFC operates at an elevated temperature, typically in the order of about 1000° C. The material in typical SOFC electrolytes is a fully dense (i.e. non-porous) yttria-stabilized zirconia (YSZ) which is an excellent conductor of negatively charged oxygen (oxide) ions at high temperatures. Typical SOFC anodes are made from a porous nickel/zirconia cermet while typical cathodes are made from magnesium doped lanthanum manganate (LaMnO3), or a strontium doped lanthanum manganate (also known as lanthanum strontium manganate (LSM)). In operation, hydrogen or carbon monoxide (CO) in a fuel stream passing over the anode reacts with oxide ions conducted through the electrolyte to produce water and/or CO2 and electrons. The electrons pass from the anode to outside the fuel cell via an external circuit, through a load on the circuit, and back to the cathode where oxygen from an air stream receives the electrons and is converted into oxide ions which are injected into the electrolyte. The SOFC reactions that occur include:
Anode reaction: H2+O═→H2O+2e−
CO+O═→CO2+2e−
CH4+4O═→2H2O+CO2+8e−
Cathode reaction: O2+4e−→2O═
Known SOFC designs include planar and tubular fuel cells. Applicant's own PCT application no. PCT/CA01/00634 discloses a method of producing a tubular fuel cell by electrophoretic deposition (EPD). The fuel cell comprises multiple concentric layers, namely an inner electrode layer, a middle electrolyte layer, and an outer electrode layer. The inner and outer electrodes may suitably be the anode and cathode respectively, and in such case, fuel may be supplied to the anode by passing through the tube, and air may be supplied to the cathode by passing over the outer surface of the tube.
In certain commercial applications, it is desirable to provide a fuel cell system having a relatively high power density, i.e. a fuel cell system that provides a high power-to-volume ratio. Such high power densities may be achieved by assembling multiple tubular fuel cells in close proximity to each other to produce a fuel cell stack. Also, higher power densities can be achieved by increasing the active surface area per unit volume of the system; for example, the active surface area per unit volume can be increased by decreasing the diameter of each tubular fuel cell, thereby increasing the number of fuel cells that can be stacked in a given volume. Such small-diameter fuel cells, especially if made of ceramic or some of its composites, can be fragile and relatively vulnerable to damage when assembled into a tightly packed array. Thin walled elongate ceramic structures tend to be particularly fragile, and may fail when subjected to bending forces or vibrations that exceed the fracture stress of the ceramic.
An objective of the invention is provide an improved support structure for solid oxide fuel cells, especially small diameter tubular elongate SOFC closely packed together in a stack. Such a support structure should provide mechanical support, protect against external vibration and shock, electrically interconnect one or more fuel cells in the stack, and pass reactant through the stack and to each fuel cell.
One aspect of the invention that provides a solution to at least some of these objections is a solid oxide fuel cell stack comprising at least one tubular solid oxide fuel cell and a matrix in which the at least one fuel cell is embedded. Each tubular solid oxide fuel cell comprises a tubular inner electrode layer, a tubular outer electrode layer, and a tubular electrolyte layer sandwiched between the inner and outer electrode layers. The matrix has multiple solid phase porous regions wherein at least one of porosity, catalytic loading, and electrical conductivity are different between a first and second matrix region.
The first and second matrix regions can be solid phase porous foams. In such case, the first matrix region can be electrically conductive and the second matrix region electrically insulating. Further, the first matrix region composition can include a material selected from a group of electrically conductive materials consisting of lanthanum strontium manganate (LSM); lanthanum strontium ferrite (LSF); lanthanum strontium cobalt ferrite (LSCF); samarium strontium cobaltite (SSC); LaCr(Mg)O3,doped LaCrO3 (La1-xSrxCrO3, La1-xCaxCrO3, La1-xMgxCrO3, LaCr(Mg)O3, LaCa1-xCryO3); 316 and 316L stainless steels; and oxide and carbide ceramics. Other suitable materials for the matrix include Inconel steel; super alloy; ferritic steel; silver and its alloys such as: silver-copper-palladium alloys, silver-palladium alloys, silver-palladium-platinum alloys, silver-gold-platinum alloys, and silver-gold-palladium alloys; gold and gold alloys; copper and copper alloys; and, cermets containing these materials. Further, cermets such as Ni-Yttria stabilized zirconia or any Ni and doped zirconia cermet, Ni and doped —CeO2 cermet, and Cu and doped-ceria cermet are suitable materials for the matrix 20 when the outer electrode of the fuel cell(s) is an anode.
The second matrix region composition can include a material selected from a group of electrically insulating materials consisting of oxide ceramics, carbide ceramics, and nitride ceramics. Specifically, this material can be selected from the group consisting of alumina, mullite, silicon nitride, and aluminum nitride. Also, the composition of the first or second matrix regions can include a material selected from a group of high emissitivity materials consisting of surface oxidized steel, super alloys and bulk SiC, LSM, and LSCF.
When the outer electrode is a cathode, the first matrix region can be electrically conductive, contact the cathode, and be coated with a catalytic material that promotes oxygen ionization electrochemical reaction or catalytically burns a fuel-oxidant mixture. In particular, the catalytic material can be selected from the group consisting of LSM, LSF, LSCF, Pt, Pd, Pt—Pd, Pt-alloys, and Pd-alloys.
When the outer electrode is an anode, the first matrix region can be electrically conductive contact the anode, and be coated with a catalyst material that promotes a fuel reforming reaction. In particular, the catalytic material can be selected from the group consisting of Cu/ZnO alloys, Ni and its alloys, Pt and its alloys, and Pd and its alloys. This first matrix region can be further coated with a catalyst material that promotes an electrochemical reaction.
Whether the outer electrode is an anode or electrode, the second matrix region can also be coated with a catalyst material, but at a lower loading than the catalyst coating on the first matrix region.
The first matrix region can be a tubular solid state porous foam layer surrounding at least one fuel cell, and the second matrix region can be a solid state porous foam support structure in which the first matrix region is embedded. The first and second matrix regions can be bonded at their interface by a bonding phase. The porosity of the second matrix region can be greater than the porosity of the first matrix region. Also, the first matrix region can be electrically conductive and the second matrix region be electrically insulating. When the stack comprises multiple fuel cells, some of the fuel cells can be surrounded by the first matrix region, and at least some of the remaining fuel cells can be surrounded by the second matrix region. In such case, the first matrix region can be electrically insulating and the second matrix region be electrically conductive.
Alternatively, the matrix can comprise an electrically insulating solid phase porous foam base structure partially coated with an electrically conductive material, such that uncoated portions of the base structure form an electrically insulating first matrix region, and the coated portions of the base structure form an electrically conductive second matrix region.
According to another aspect of the invention, a fuel cell assembly comprises a plurality of tubular solid oxide fuel cell subassemblies each comprising a tubular inner electrode layer, a tubular outer electrode layer, a tubular electrolyte layer sandwiched between the inner and outer electrode layers, and a tubular solid phase porous foam layer surrounding the outer electrode layer. The foam layer contacts the foam layer of at least one adjacent subassembly. The foam layers collectively form a matrix in which the fuel cells are embedded and at least one of catalyst loading, porosity and electrical conductivity of at least two of the foam layers is different. Further, at least some of the subassemblies can be embedded in a solid phase porous foam matrix having at least one of porosity, catalyst loading and electrical conductivity that is different than at least one of the foam layers.
a) and (b) are schematic end views of a plurality of the first sub-stacks shown in
a) and (b) are schematic end views of a plurality of the second sub-stacks shown in
When describing the present invention, the following terms have the following meanings, unless indicated otherwise. All terms not defined herein have their common art-recognized meanings.
The term “ceramic” refers to inorganic non-metallic solid materials with a prevalent covalent or ionic bond including, but not limited to metallic oxides (such as oxides of aluminum, silicon, magnesium, zirconium, titanium, chromium, lanthanum, hafnium, yttrium and mixtures thereof) and nonoxide compounds including but not limited to carbides (such as of titanium tungsten, boron, silicon), sulicides (such as molybdenum disicilicide), nitrides (such as of boron, aluminum, titanium, silicon) and borides (such as of tungsten, titanium, uranium) and mixtures thereof; spinels, titanates (such as barium titanate, lead titanate, lead zirconium titanates, strontium titanate, iron titanate), ceramic super conductors, zeolites, and ceramic solid ionic conductors (such as yttria stabilized zirconia, beta-alumina and cerates).
The term “cermet” refers to a composite material comprising a ceramic in combination with a metal, typically but not necessarily a sintered metal, and typically exhibiting a high resistance to temperature, corrosion, and abrasion.
The term “hollow inorganic membrane (HIM)” refers to a tubular body comprising an inorganic material. The cross-sectional geometry may be any shape such as circular, square, rectangular, triangular, and polygonal. The longitudinal geometry of the tubular body may be any shape such as elongate, serpentine, and coiled. The membrane may be porous or non-porous. The inorganic material includes metal, cermet composite, ceramic, and ceramic—ceramic composites.
The term “porous” in the context of hollow ceramic, metal, and cermet membranes and matrices means that the ceramic material contains pores (voids). Therefore, the density of the porous membrane material is lower than that of the theoretical density of the material. The voids in the porous membranes and matrices can be connected (i.e., channel type) or disconnected (i.e. isolated). In a porous hollow membrane or matrix, the majority of the pores are connected. To be considered porous as used herein in reference to membranes, a membrane should have a density which is at most about 95% of the theoretical density of the material. The amount of porosity can be determined by measuring the bulk density of the porous body and from the theoretical density of the materials in the porous body. Pore size and its distribution in a porous body can be measured by mercury or non-mercury porosimeters, BET or microstructural image analysis as is well known in the art.
Single Region Matrix
Referring to
Referring to
The matrix 20 is porous with most of the pores being channel-type connected pores to allow the flow-through of oxidant through the stack 10, and to the cathode layer 16 of each fuel cell 12. The porosity of the matrix 20 is selected to provide a sufficient oxidant flow-through rate for the electrochemical reaction and sufficient mechanical strength to serve as a support structure for the fuel cell stack 10. In this connection, the matrix 20 has a porosity of between 10-95% and preferably about 60% (see the SEM micrograph of the foam matrix microstructure in
Although the matrix 20 in this embodiment is substantially composed of LSM, the matrix 20 composition can alternatively include other materials. For example, the matrix 20 can be substantially composed of a suitable electronic or mixed (electronic and ionic) conductive porous solid state material, if it is desired for the matrix 20 to be electronically and/or ionically conductive. The specific % material composition required for the matrix 20 to be electronically and/or ionically conductive depends on the material and can be readily determined by one skilled in the art. For example, suitable materials for the matrix 20 include: lanthanum strontium ferrite (LSF); lanthanum strontium cobalt ferrite (LSCF); samarium strontium cobaltite (SSC); LaCr(Mg)O3,doped LaCrO3 (La1-xSrxCrO3, La1-xCaxCrO3, LaCr(Mg)O3, LaCa1-xCryO3); stainless steels such as 316, 316L; SiC; MoSi2; and oxide or carbide ceramics. Other suitable materials for the matrix 20 include Inconel steel; super alloy; ferritic steel; silver and its alloys such as: silver-copper-palladium alloys, silver-palladium alloys, silver-palladium-platinum alloys, silver-gold-platinum alloys, and silver-gold-palladium alloys; gold and gold alloys; copper and copper alloys; and, cermets containing these materials. Further, cermets such as Ni-Yttria stabilized zirconia or any Ni and doped zirconia cermet, Ni and doped-CeO2 cermet, and Cu and doped-ceria cermet are suitable materials for the matrix 20 when the outer electrode of the fuel cell(s) 12 is an anode.
As an electronic conductor, the matrix 20 can carry electricity by electron transportation, e.g. metals. As a mixed conductor, the matrix 20 can carry electricity by electron and ion transportation; suitable material:: for a mixed conductor matrix 20 include LSM, LSF, LSCF and metal/ceramic composites. As an ionic conductor. the matrix 20 can carry electricity by ion transportation; a suitable material for an ionic conducting matrix 20 is Yttria-doped zirconia, tri- or di-valent cation doped cerium or zirconium oxide. “Electrical conductivity” as used herein means electronic and/or ionic conductivity.
For the purpose of temperature uniformity, the matrix 20 can be made from high emissivity materials of emissivity >0.7, typically around 0.9. Some suitable high emissivity materials include: surface oxidized steel, super-alloys and bulk SiC, LSM, and LSCF. Alternatively, the matrix 20 can comprise a base structure made of low emissivity materials and coated with a high emissivity material. In this case the high emissivity coating volume will be <30%.
Optionally, the matrix 20 can made of or coated with electrically insulating materials to alter the electrical conductivity characteristics throughout the matrix 20 or in selected parts of the matrix 20. When the matrix 20 is to be partially or wholly electrically insulating, the matrix 20 can be made partly or wholly with a suitable electrically insulating material, such as those materials selected from the group of insulating materials consisting of oxide ceramics, carbide ceramics, and nitride ceramics. Exemplary insulating materials include alumina, mullite, silicon nitride, and aluminum nitride.
By assembling a plurality of fuel cells 12 into the stack 10, commercially useful electrical power levels may be achieved. When the entire matrix 20 is electrically conductive, each of the fuel cells 12 contacting the matrix 20 are effectively electrically connected in parallel to each other, such that the effective voltage of the stack 10 is equal to the voltage of the single cell 12 with the highest voltage and the effective current of the stack 10 is the additive sum of the current produced by each fuel cell 12. As will be discussed later, different regions of the matrix 20 can have different degrees of electrical conductivity. For example, one or more fuel cells 12 can be surrounded by an electrically insulating matrix region that electrically isolates these fuel cells 12 from the electrically conductive portions of the stack 10, thereby enabling these fuel cells 12 to be electrically coupled in series instead of in parallel.
Multiple Region Matrix
The conductive matrix 20 as shown in
The matrix 20 can have multiple regions in which certain properties of one region differ from certain properties of another region. One approach to creating these multiple regions is shown in
Porosity
The porosity can be different between the tubular and supporting matrix regions 52, 54. The porosity of the tubular matrix region 52 is selected to balance the need for good reactant access to the reaction areas (higher porosity) and good electrical conductivity (lower porosity) Preferably, the porosity of the supporting matrix region 54 is greater than the porosity of the first matrix region 52, as its primary purpose is to provide mechanical support rather than conduct electricity. The higher porosity in the supporting matrix region 54 provides a better flow path thereby reducing pressure drop and improving reactant and reactant product access to and from the reaction zones, lower density thereby reducing overall system weight, and greater flexibility as a result of a smaller cross-section of matrix ligaments. The greater flexibility improves the supporting matrix region's 54 ability to absorb mechanical shock.
There are a number of different ways to obtain different porosities between the two matrix regions 52, 54. For example, different foaming agents in the slurries can be used to form each matrix region 52, 54. Additionally or alternatively, different porosities can be obtained by using different sized combustible additives (i.e., pore former) in the slurries. Also, the degree of porosity can be varied by varying the amount of combustible additives between slurries. Pore size distribution can also be controlled by controlling the combustible particles size distribution within each matrix region 52, 54. Further, varying the particle size of the starting matrix materials can be used to vary the porosity between matrix regions 52, 54. For example, LSM can be the matrix material for both matrix regions 52, 54, wherein the two matrix regions 52, 54 are sintered at a temperature of 1200° C. for two hours. The tubular matrix region 52 can comprise LSM powder having an average particle size of 1 μm, and the supporting matrix region 54 can comprise LSM powder having an average particle size of 10 μm. Since the LSM particle size of the supporting matrix region 54 is larger, the sinterability of the supporting matrix region 54 is lower. Thus, when both matrix regions 52, 54 are sintered, the supporting matrix region 54 will have a higher porosity than the tubular first matrix region 52. Manufacture of pores in the matrix 20 are described in detail in Applicant's application no. PCT/CA03/00216.
Catalyst Loading
The catalyst loading can be different between the tubular and supporting matrix regions 52, 54. For example, one or both of the tubular and supporting matrix regions 52, 54 can be partially or completely coated with one or more types of catalyst material as is known in the art. Also, catalyst concentration can vary from place to place within the tubular and/or supporting matrix regions 52, 54. When the outer electrode of the fuel cell 12 is the cathode 16, and the tubular matrix region 52 is electrically conductive, the tubular matrix region 52 can be coated with a catalyst that promotes an oxygen ionization electrochemical reaction, or can be coated with a catalyst that catalytically burns a fuel-oxidant mixture to produce heat during stack start-up. Such catalytic material is well known in the art and includes LSM, LSF, LSCF, Pt, Pd, Pt—Pd, Pt-alloys, and Pd-alloys. LSM, LSF and LSCF are good cathode materials that promote cathode reactions. Pt, Pd, Pt—Pd, Pt alloys and Pd alloys are good catalyst materials for promoting catalyst burning, as well as good cathode and anode materials.
The catalyst material can be deposited on the matrix regions 52, 54 by catalyst coating methods as known in the art, such as dip-coating, spraying, and soaking the matrix surface with catalyst solution. The coating steps may be repeated several times to increase catalyst loading. After coating and drying, the coated matrix regions 52, 54 are heat treated at the lowest possible temperature to sufficiently decompose any salt and organic material present; high heat treatment temperatures tend to coarsen the catalytic coating and reduce catalytic performance. A suitable heat temperature is around an SOFC operating temperature.
In catalytic burning, fuel is mixed with oxidant such as air to produce an oxygen-rich mixture. The mixture is passed through the tubular matrix region 52; the fuel in the mixture will catalytically lean burn and produce heat. Once the stack 10 is heated and the fuel cells 12 are operating, the fuel supply to the tubular matrix region 52 will be stopped, and catalytic burning will end. As the tubular matrix region 52 is coated with catalytic burning material, fuel will burn very near the fuel cells 12 and thus the fuel cells 12 should heat up quickly. Additionally, the supporting matrix region 54 can also be coated with catalytic material, albeit at a lower concentration than at the tubular matrix region 52, so that the entire stack 10 is heated with a concentration of heating occurring around the fuel cells 12. Optionally, the catalyst loading can be varied within one or both of the matrix regions 52, 54 to produce a custom temperature distribution in the stack 10.
When the outer electrode of the fuel cell 12 is an anode, fuel can be reformed at one or both of the matrix regions 52, 54 by partial oxidation, steam reforming, or auto-thermal reforming. In such case, one or both of the matrix regions 52, 54 are fully or partially coated with a suitable reforming catalyst material by preferential coating. Such catalyst material is well known in the art and include Cu/ZnO, Ni-based, Pt and its alloys, Pd and its alloys. The reforming catalyst material concentration can be varied within the two matrix regions 52, 54 to promote a customized temperature and fuel distribution within the stack 10. In addition to the reforming catalyst material, one or both of the matrix regions 52, 54 can be coated with catalyst material for promoting electrochemical reaction; such catalyst material is well known in the art and include Pt and its alloys and Pd and its alloys.
Electrical Conductivity
One or more of the tubular matrix regions 52 can be made from one or more of the electrically conductive and/or insulating materials described above such that the electrical conductivity of some of the tubular matrix regions 52 is different than the electrical conductivity of the other tubular matrix regions 52. Additionally or alternatively, the supporting matrix region 54 can be made from one or more of the electrically insulating and/or conductive materials described above such that the electrical conductivity of the supporting matrix region 54 is different from the electrical conductivity of one or more of the tubular matrix regions 52.
For example, the supporting matrix region 54 can be composed of one or more electrically insulating materials selected from the group of oxide-ceramics, nitride ceramics, and carbide ceramic, e.g. alumina, zirconia, spinel oxides, MgO, mullite, silica, and TiO2. The specific % material composition required for the supporting matrix region 54 to be electrically insulating depends on the material and can be readily determined by one skilled in the art. In such case, the supporting matrix region 54 serves to electrically isolate each fuel cell 12 embedded in the matrix 20.
Alternatively, the supporting matrix region 54 can be a composite structure comprising different insulating materials, or a composite structure comprising electrically insulating and electrically conductive materials, wherein the insulating material(s) is a continuous phase and the conductive material(s) is a non-continuous or disconnected phase which causes the entire structure to exhibit electrically insulating characteristics. Such a mixed matrix can be manufactured from a slurry having a mixture of electrically conducting an electrically insulating materials wherein the amount of electrically conducting materials is below the percolation limit of the matrix.
Alternatively, the tubular matrix region 52 can be composed of an electrically conductive material and be surrounded by another layer of matrix material composed of an electrically insulating material, thereby forming a bi-layered assembly (not shown). The insulating outer matrix layer can be made from a suitable electrically insulating materials such as alumina, silica, or magnesia in accordance with the methods disclosed in Applicant's application PCT/CA03/00216. Such a bi-layer assembly provides efficient current collection, introduces some mechanical stability and protects the fuel cells 12 from the surroundings; each cell 12 is electrically isolated and enables the cells 12 to be connected either in series or parallel according to the specific design need.
In yet another alternative embodiment (not shown), only some of the fuel cells 12 are surrounded by the tubular matrix region 52, and the tubular and supporting matrix regions 52, 54 are manufactured with different electrical conductivities. For example, the tubular matrix regions 52 are electrically insulating, and the supporting matrix region 54 is electrically conductive. The fuel cells 12 not surrounded by the tubular matrix regions 52 directly contact the supporting matrix region 54 and will thus be electrically coupled together in parallel. The fuel cells 12 surrounded by the tubular matrix regions 52 are electrically isolated from each other but can be electrically coupled together in series or in parallel if so desired. Also they can be divided in subgroups and can be connected in series or parallel.
In a further alternative embodiment (not shown), the matrix 20 has an electrically insulating base structure partially coated with an electrically conductive material. The uncoated portions of the matrix 20 serve as a first matrix region and is electrically insulating; the coated portions of the matrix 20 serve as a second matrix region and are electrically conductive. Such an arrangement can be particularly useful to electrically couple only certain fuel cells 12 in the stack, i.e. by contacting these fuel cells 12 with the coated portions. The base structure composition can include one or more of the electrically insulating materials described above, and the composition of the electrically conductive coatings can include one or more of the electrically conductive materials described above.
Manufacture
The tubular matrix region 52 can be made by the methods disclosed in Applicant's previous application PCT CA03/00216. This application discloses forming a slurry and coating the fuel cells 12 with the slurry; depending on the desired catalytic, porosity and electrical conductivity properties desired, the slurry can have a composition based on LSM, LSF, LSCF, a Fe-based super alloy, samarium strontium cobaltite (SSC); LaCr(Mg)O3 doped LaCrO3 (La1-xSrxCrO3, La1-xCaxCrO3, La1-xMgxCrO3, LaCr(Mg)O3, LaCa1-xCryO3); stainless steels such as 316, 316L; oxide or carbide ceramics; cermets such as Ni-Yttria stabilized zirconia or any Ni and doped zirconia cermet, Ni and doped-CeO2 cermet, and Cu and doped-ceria cermet; Inconel steel or any super alloy; ferritic steel; SiC; MoSi2; silver and its alloys such as: silver-copper-palladium alloys, silver-palladium alloys, silver-platinum alloys, silver-palladium-platinum alloys, silver-gold-platinum alloys, and silver-gold-palladium alloys; gold and gold alloys; and, copper and copper alloys.
The slurry coating may be applied by dip-coating or spraying or other suitable known means. Then, the slurry-coated fuel cells 12 are allowed to dry, and sintered according to the sintering steps described in PCT/CA03/00216, such that multiple matrix-coated fuel cell subassemblies 53 are formed.
The supporting matrix region 54 can be formed by first pouring a slurry into a container (not shown), then inserting one or more combustible rods (not shown) in the slurry. The rods have generally the same diameter as the matrix-coated fuel cell subassembly 53. The slurry composition of the supporting matrix region 54 can be different than the slurry composition for the tubular matrix region 52 to produce two matrix regions 52, 54 with different properties. Alternatively or additionally, the two matrix regions 52 and 54 can be made from same materials but have different porosities e.g., the supporting matrix region 54 can have a higher porosity than the tubular matrix region 52.
The slurry and rods are then dried and sintered according to the steps described in Applicant's prior application PCT CA03/00216, and the rods bum away, leaving behind the porous supporting matrix region 54 with channels corresponding to the burned-away rods. Then, the matrix-coated fuel cell subassemblies 53 are inserted into the channels. If the fuel cell 12 is not securely embedded in the channel, a bonding agent such as additional slurry may be poured between the fuel cell and the channel, and an additional drying and sintering step can be carried out to solidify the slurry and fasten the fuel cell 12 in place. Optionally, some of the channels can be used as gas distribution channels for promoting the flow of reactant through the stack.
According to another embodiment of the invention, and referring now to
According to another alternative embodiment of the invention, the buffering matrix region 56 can be applied to fuel cell stacks (not shown) that are not embedded in a matrix 20. The fuel cells of such stacks can be stacked together using other techniques as known in the art, e.g. by spacers. The buffering matrix region surrounds the fuel cells of the stack and serves as a buffer layer against mechanical shock.
Optionally, and referring to
Referring to
By selectively arranging electrically conductive matrix regions 52 amongst the electrically insulating subassemblies 53, it is possible to customize the series-parallel electrical connections of the fuel cells 12. Also, the first and second matrix regions in this embodiment can have other differing properties, such as porosity and catalyst loading/distribution. Further, additional matrix regions can be provided having different properties (not shown).
Referring now to
Referring to
Referring to
While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope and spirit of the invention. For example, the multiple region matrix 20 can be used in membrane reactor and other non-fuel cell electrochemical device applications.
This application is a continuation-in-part (CIP) of U.S. application Ser. No. 10/504,624 and which is incorporated herein by reference in its entirety and for all teachings, disclosures and purposes.
Number | Name | Date | Kind |
---|---|---|---|
3707234 | Salemi | Dec 1972 | A |
4454207 | Fraioli et al. | Jun 1984 | A |
4490444 | Isenberg | Dec 1984 | A |
4567117 | Patel et al. | Jan 1986 | A |
4664986 | Draper et al. | May 1987 | A |
4728584 | Isenberg | Mar 1988 | A |
4729931 | Grimble | Mar 1988 | A |
4791035 | Reichner | Dec 1988 | A |
5002647 | Tanabe et al. | Mar 1991 | A |
5077148 | Schora et al. | Dec 1991 | A |
5103871 | Misawa et al. | Apr 1992 | A |
5169730 | Reichner et al. | Dec 1992 | A |
5169731 | Yoshimura et al. | Dec 1992 | A |
5188910 | Ishihara et al. | Feb 1993 | A |
5190834 | Kendall | Mar 1993 | A |
5244752 | Zymboly | Sep 1993 | A |
5273837 | Aitken et al. | Dec 1993 | A |
5273838 | Draper et al. | Dec 1993 | A |
5302319 | Wright et al. | Apr 1994 | A |
5342704 | Vasilow et al. | Aug 1994 | A |
5354626 | Kobayashi et al. | Oct 1994 | A |
5380600 | Hansen et al. | Jan 1995 | A |
5385700 | Denton | Jan 1995 | A |
5411767 | Soma et al. | May 1995 | A |
5458989 | Dodge | Oct 1995 | A |
5518827 | Matsumura et al. | May 1996 | A |
5693230 | Asher | Dec 1997 | A |
5733675 | Dederer et al. | Mar 1998 | A |
5763114 | Khandkar et al. | Jun 1998 | A |
5807642 | Xue et al. | Sep 1998 | A |
5827620 | Kendall | Oct 1998 | A |
5895573 | Scharstuhl | Apr 1999 | A |
5908713 | Ruka et al. | Jun 1999 | A |
5932368 | Batawi et al. | Aug 1999 | A |
5935727 | Chiao | Aug 1999 | A |
5942348 | Jansing et al. | Aug 1999 | A |
5952116 | Blum et al. | Sep 1999 | A |
5976721 | Limaye | Nov 1999 | A |
5993985 | Borglum | Nov 1999 | A |
5993989 | Baozhen et al. | Nov 1999 | A |
6001501 | Collie | Dec 1999 | A |
6007932 | Steyn | Dec 1999 | A |
6017646 | Prasad et al. | Jan 2000 | A |
6051173 | Fasano et al. | Apr 2000 | A |
6051330 | Fasano et al. | Apr 2000 | A |
6074771 | Cubukcu et al. | Jun 2000 | A |
6080501 | Kelley et al. | Jun 2000 | A |
6093297 | Tomura et al. | Jul 2000 | A |
6099985 | Elangovan et al. | Aug 2000 | A |
6183897 | Hartvigsen et al. | Feb 2001 | B1 |
6194335 | Crome et al. | Feb 2001 | B1 |
6207311 | Baozhen et al. | Mar 2001 | B1 |
6214490 | Pate | Apr 2001 | B1 |
6217822 | Borglum | Apr 2001 | B1 |
6238819 | Cahill et al. | May 2001 | B1 |
6290756 | Macheras et al. | Sep 2001 | B1 |
6312847 | Tsukuda et al. | Nov 2001 | B1 |
6338913 | Eshraghi | Jan 2002 | B1 |
6383350 | Sehlin et al. | May 2002 | B1 |
6399232 | Eshraghi | Jun 2002 | B1 |
6403248 | Eshraghi | Jun 2002 | B1 |
6403517 | Eshraghi | Jun 2002 | B1 |
6423436 | George et al. | Jul 2002 | B1 |
6436565 | Song et al. | Aug 2002 | B1 |
6605316 | Visco et al. | Aug 2003 | B1 |
6709782 | Keegan et al. | Mar 2004 | B2 |
6824907 | Sarkar et al. | Nov 2004 | B2 |
6838205 | Cisar et al. | Jan 2005 | B2 |
6936367 | Sarkar et al. | Aug 2005 | B2 |
20020028367 | Sammes et al. | Mar 2002 | A1 |
20020048699 | Steele et al. | Apr 2002 | A1 |
20030059668 | Visco et al. | Mar 2003 | A1 |
20030134169 | Sarkar et al. | Jul 2003 | A1 |
20030134170 | Sarkar et al. | Jul 2003 | A1 |
20030134171 | Sarkar et al. | Jul 2003 | A1 |
20030134176 | Sarkar et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
3922673 | Jan 1991 | DE |
19957641 | Jan 2001 | DE |
0 055 011 | Jun 1982 | EP |
0 424 673 | May 1991 | EP |
0451971 | Oct 1991 | EP |
0678597 | Oct 1995 | EP |
0713931 | May 1996 | EP |
0896378 | Feb 1999 | EP |
02 192665 | Jul 1990 | JP |
04237964 | Aug 1992 | JP |
4248272 | Sep 1992 | JP |
04 355059 | Dec 1992 | JP |
08 050914 | Feb 1996 | JP |
09-283161 | Oct 1997 | JP |
10158894 | Jun 1998 | JP |
11226370 | Aug 1999 | JP |
2002-329508 | Nov 2002 | JP |
WO 9917390 | Apr 1999 | WO |
WO 0124300 | Apr 2001 | WO |
WO 0128011 | Apr 2001 | WO |
WO 0186030 | Nov 2001 | WO |
WO 0215310 | Feb 2002 | WO |
WO 03069705 | Aug 2003 | WO |
Entry |
---|
English translation of a Notification of First Office Action issued on Apr. 28, 2006 by The State Intellectual Property Office of the People's Republic of China in the Chinese counterpart application, Appln. No. 03804019.0. |
English translation of a Notice of Reasons for Rejection mailed on Nov. 25, 2008 by the Japanese Patent Office in the Japanese counterpart application, Appln. No. 2003-568716. |
Notification of a Requisition mailed on Sep. 16, 2009 by the Canadian Intellectual Property Office in the Canadian Counterpart application, Appl. No. 2,475,906. |
Letter dated Oct. 1, 2009 reporting Notification of Provisional Rejection from the Korean Intellectual Property Office dated Sep. 22, 2009 in Korean counterpart application, Appln. No. 2004-7012675. |
Number | Date | Country | |
---|---|---|---|
20060246337 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10504624 | US | |
Child | 11303042 | US |