The present invention is directed to fuel cell systems, specifically to insulation for a solid oxide fuel cell (SOFC) system hot box.
Fuel cells, such as solid oxide fuel cells, are electrochemical devices which can convert energy stored in fuels to electrical energy with high efficiencies. High temperature fuel cells include solid oxide and molten carbonate fuel cells. These fuel cells may operate using hydrogen and/or hydrocarbon fuels. There are classes of fuel cells, such as the solid oxide regenerative fuel cells, that also allow reversed operation, such that oxidized fuel can be reduced back to unoxidized fuel using electrical energy as an input.
To maintain high efficiency, a desired temperature of the fuel cells should be maintained throughout operation. However, gaps within layers in the fuel cell hot box and instrumentation feed-thru holes may introduce significant heat leaks, resulting in undesired temperature variation.
An embodiment relates to a method of insulating a base portion of a fuel cell system including pouring an insulation that can be poured to fill at least 30 volume % of a base portion cavity of the fuel cell system housing through an opening in a sidewall of the housing. The base portion cavity of the housing is located between a bottom wall of the housing and a stack support base plate located in the housing. The stack support base plate supports one or more columns of fuel cell stacks.
Another embodiment relates to a fuel cell system including a housing having a base portion cavity. The base portion cavity of the housing is located between a bottom wall of the housing and a stack support base plate located in the housing. The stack support base plate supports one or more columns of fuel cell stacks and the system includes insulation that can be poured in the base portion cavity.
Another embodiment relates to a method of insulating a sidewall of a fuel cell system housing including providing a compliant insulating layer between the sidewall and a resilient insulating material.
Another embodiment relates to a fuel cell system including an outer hot box housing surrounding one or more stacks of fuel cells, a resilient insulating material inside the outer housing surround the one or more stacks of solid oxide fuel cells and a compliant insulating layer located between the housing and the resilient insulating material.
Another embodiment relates to a method of sealing plumbing penetrations of a fuel cell system including providing a silicon coated fiberglass gasket around the plumbing penetrations through a hot box housing of the system and covering the gasket with a gasket frame.
Another embodiment relates to a solid oxide fuel cell system including one or more stacks of solid oxide fuel cells enclosed in a hot box housing, a fuel input conduit, an oxidant input conduit, at least one exhaust output conduit, at least one cavity in the housing comprising an insulation material that can be poured and at least one gasket around one or more of the fuel input, oxidant input and at least one exhaust output conduits. The gasket is configured to prevent loss of the insulation material that can be poured from the cavity.
Embodiments of the present invention are drawn to solid oxide fuel cell (SOFC) systems and methods of insulating SOFC systems. Maintaining stable temperatures during operation of high temperature SOFC systems may improve both the thermal efficiency and the electrical efficiency of these systems. Embodiments include the use of an insulation material that can be poured (i.e., a pourable insulation material). One type of an insulation material that can be poured may be a “free flow” insulation which is a fluid that can be poured into an opening in the SOFC housing but which solidifies into a high temperature resistant material when cured. In an alternative embodiment, the insulation that can be poured is a flowable insulation material that does not need to be cured. In this embodiment, the material that can be poured is made of dry solid granular particles having the consistency of sand or pellets. Other embodiments include the combination of an insulation material that can be poured and a microporous insulating board. Still other embodiments are drawn to providing a compliant insulating layer between the sidewall of the SOFC housing and a resilient insulating layer inside the SOFC housing.
One method of insulating the base portion of a high temperature fuel cell system is disclosed in U.S. patent application Ser. No. 13/344,304, filed Jan. 5, 2012 and hereby incorporated by reference in its entirety. This method is illustrated in
The tube 900 may be insulated in the base with super wool 901 and/or a pourable insulation material 902. The pourable insulation material may be the “free flow” insulation 902 which is a fluid that can be poured into an opening in the base 500 around the tube 900 and then solidifies into a high temperature resistant material when cured. Free flow 902 fills less than 10 volume % of the base cavity around the tube 900. In an alternative embodiment, the insulation material that can be poured 902 is made of dry solid granular particles.
The SOFC system 100 also includes cathode recuperator 200 located about an outer periphery of the columns 11 of fuel cell stacks 9. To insulate the SOFC system 100 from heat loss, a resilient insulating layer 210 may be provided in the gap between the cathode recuperator 200 and the sidewall 330 of the outer housing 300 (e.g. hot box) of the SOFC system 100. To further insulate the SOFC system 100, a compliant insulating layer 260 may be provided in gap 250 between the resilient insulating layer 210 and the sidewall 330 of the outer housing 300 of the SOFC system 100. The resilient insulation layer 210 may be made of any suitable thermally insulating resilient material, such as a pourable material, e.g., a free flow material or a solid granular material. The compliant layer 260 may be made of any suitable material, such as thermally resistant felt, paper or wool. As used herein, a “compliant” material is a material that compresses and expands by at least 10 volume percent without damage. The base cavity 102 (also illustrated in
Transient heat fluctuations during operation of the SOFC, may cause the thin outer housing 330 (e.g. a metal housing) to expand and contract more rapidly than the more massive internal components of the SOFC system (e.g. stacks, etc.). This, in turn, may result in fatigue and damage to the insulation shell/containment and/or to the outer housing 300 and/or to the cathode recuperator. Further, absent a compliant insulating layer 260 in the gap 250 between the resilient insulating layer 210 and the sidewall of the outer housing 330, a gap may be generated sufficiently large to allow the compression resistant (i.e. resilient) pourable insulation 210 to escape the SOFC if the sidewall 330 of the outer housing 300 expands faster than the internal components of the SOFC system. However, the addition of a compliant insulating layer 260 in the gap 250 between the resilient insulating layer 210 and the sidewall of the outer housing 330 absorbs the stresses caused by expansion of the internal components of the SOFC, thereby protecting the outer housing 300, the cathode recuperator 200, the resilient layer 210 and/or the compliant insulating layer 260 and expands to fill any gaps formed if the outer housing 300 expands faster than the internal components of the SOFC. In other embodiments, at least 30 vol. %, such as at least 50%, e.g., 30-100 vol. %, e.g. 50-75 vol.% of the base cavity is filled with pourable insulation.
Another embodiment is illustrated in
A frame 604 may be provided to secure the gasket 602 to the sidewall 330 of the outer housing 300 (e.g. to the sidewall of the base pan 502 portion of he outer housing 300. For example, the gasket 602 may be secured by placing the gasket between the frame 604 and the sidewall 330 of the outer housing 300 and bolting the frame 604 to the sidewall 330 of the outer housing 300. The instrumentation, (thermocouples, etc.), pipes, tubes, etc. pass through openings 606 in the gasket(s) 602.
Although the foregoing refers to particular preferred embodiments, it will be understood that the invention is not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments and that such modifications are intended to be within the scope of the invention. All of the publications, patent applications and patents cited herein are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61728290 | Nov 2012 | US |