The invention relates to fuel cells and with more particularity to manifolds for fuel cell systems.
Manifolds are used to route and distribute air and fuel into various components of a fuel cell system. Current fuel cell systems utilize manifolds that are rigidly coupled to the fuel cell tubes. Therefore, current manifold designs are not adapted for portable applications in that current manifold designs are undesirably large, are not designed for mass manufacturability, and are not robust, shock, vibration, and thermal transitions.
For example, current manifolds do not allow fuel cell components to flex or comply to allow for variations in the position of fuel cell tubes relative to each other or relative to other fuel cell components. Further, rigid manifold connections do not allow for variations in fuel cell components for example structural variations, shape, straightness, or other toleranced dimensions that can vary during manufacturing. Rigid manifolds can restrict the packaging design and manufacturing options and can undesirably increase the overall size of portable fuel cells. Still further, current manifolds are not adapted for portability and current manifolds are not configured to manage thermal expansion differences between component materials. Therefore, there is a need for a fuel cell manifold that is compliant and that allows variations in the position of fuel cell tubes relative to each other and relative to other fuel cell components.
A solid oxide fuel cell module includes a manifold member comprising a plurality of openings. The solid oxide fuel cell module further includes a plurality of fuel cell tube units. The solid oxide fuel cell module further includes a fuel cell tube unit to manifold interconnect member providing a fluid flow channel between the manifold member and the plurality of tubes, wherein the fuel cell tube unit to manifold interconnect member comprises a polymer material.
Fuel cell systems in accordance with exemplary embodiments are described herein. In one embodiment, a manifold member distributes gas to multiple fuel cell tubes of the fuel cell system. The manifold member is connected to each of the fuel cell tubes such that a substantially gas-tight seal is maintained between an inner chamber of each fuel cell tube and an inner chamber of the manifold member. In one embodiment, a resilient interconnecting member couples the manifold to the fuel cell tubes. The resilient member allows for movement of the plurality of fuel cell tubes connected to the manifold member relative to other fuel cell components. The resilient member can dampen oscillations and reduce mechanical stresses on components of the fuel cell system due to movement of fuel cell components relative to each other. Movement of fuel cell components relative to each other can be caused by external forces on the fuel cell system (for example, vibrational movement), by thermal expansion mismatch between fuel cell system components and by fluid flow within the fuel cell system. Further, the resilient member can adapt to manufacturing variations in, for example, tube size and tube position and the resilient member can facilitate simplified manifold-to-tube assembly.
The fuel cell tubes 18 each comprises an anode layer, an electrolyte layer, and a cathode layer at an active portion 50 that generates electromotive force at the active portion 50 at operating temperatures in the range of 600 to 950 degrees Celsius. However, only the active portion 50 of the fuel cell tube 18 contains the anode layer, the electrolyte layer, and the cathode layer, and therefore, only a portion of the fuel cell tube 18 requires high operating temperatures for generating electromotive force. Therefore, the operating temperatures proximate the inlet portion 19 of the fuel cell tube 20 is less than 250 degrees Celsius, and in an exemplary embodiment, the operating temperature proximate the inlet portion 19 of the fuel cell tube 20 is between about 100 degrees Celsius and 250 degrees Celsius. Thus, low-temperature materials such as the flexible materials described for the interconnect member 30 be utilized to couple the fuel cell tubes 18 to the manifold member 10.
The exemplary fuel cell tube 18 is a solid oxide fuel cell that is advantageously relatively lightweight and that can operate providing high power to mass ratio. As an example, the tube can be 1 mm-30 mm in diameter and can be heated rapidly. An example of a suitable fuel cell is disclosed in U.S. Pat. No. 6,749,799 to Crumm et al, entitled METHOD FOR PREPARATION OF SOLID STATE ELECTROCHEMICAL DEVICE which is hereby incorporated by reference in its entirety. Other material combinations for the anode layer, the cathode layer, and the electrolyte layer as well as other cross-section geometries (triangular, square, polygonal, etc.) will be readily apparent to those skilled in the art given the benefit of the disclosure.
The manifold member 10 can input fuel in one or more inlet openings and substantially evenly distribute fuel among multiple fuel cell tubes 18 of the fuel cell system 15. The manifold member 10 can distribute fuel substantially evenly utilizing backpressure control members. Referring to
In one embodiment, the backpressure control member can provide functionality in addition to providing a calibrated cross-sectional area for creating a selected amount of backpressure. For example, in one embodiment, a current collector (not shown) disposed within the fuel cell tube 18 can have a calibrated cross-sectional area providing pneumatic resistance to create a selected amount of backpressure. Additionally, in another aspect, the backpressure control members may be integral with the fuel cell tubes 18, that is, the fuel cell tubes 18 may have a calibrated cross-sectional area to provide a selected amount of pneumatic resistance.
The back pressure control member can reduce variability due to downstream pneumatic pressure thereby providing substantially uniforms fuel flow through each of the fuel cell tubes. For example, a fuel cell stack can operate at a nominal operating pressure of 2+/−0.5 inches (or a 25% variance range) without a back pressure control member. Back pressure control members tolerance to provide a 5+/−0.05 inches of back pressure can be added to the fuel cell stack with the nominal operating pressure of 2+/−0.5 inches thereby providing a fuel cell with a back pressure of 7+/−0.55 inches (or a 7.9% variance range).
In one embodiment, the fuel reforming reactor 52 disposed within the fuel cell tube 18 can have a calibrated cross-sectional area to create a selected amount of backpressure. In one embodiment, the backpressure control member can comprise multiple components within the fuel cell tube. For example, a fuel reforming reactor disposed within a fuel feed tube and a current collector can each have calibrated cross sectional areas to create a selected amount of backpressure such that the fuel is substantially evenly distributed among the fuel cell tubes.
Referring to
In one embodiment, the interconnecting members 30 comprise a flexible silicone-base polymer configured maintain a gas tight seal with the end of the fuel cell tube at temperatures above 100 degrees Celsius and more specifically temperatures of about 200 degrees Celsius to about 250 degrees Celsius. Other exemplary materials for interconnect members are described below:
Table 1 includes exemplary interconnecting member 30 material and associated Young's Elasticity Moduli for each material including rubber, low density (‘LD’) polyethylene, high density (“HD”) polyethylene, nylone, graphite, cork, polycarbonate, polyurethane elastomer, and silicone polymers. Other exemplary materials can further include other elastomers, natural rubber and synthetic rubber (e.g., nytrol), natural latex and synthetic latex (vinyl acetate, styrene-butadiene, and acrylates). The exemplary interconnect members can comprise a modulus of elasticity that is less than or equal to one tenth a modulus of elasticity of a portion of the fuel cell tube unit 21 contacting the manifold member. In one embodiment, the polymer material comprises an elastic modulus of less than 3 GPA, and more specifically less than 0.8 GPA. In one embodiment, the interconnect member comprises material having and elastic modulus of less than 0.1 GPA, for example silicone-based polymers, rubber and like materials.
The fuel cell manifold member 10 may have various shapes including, for example, a ring shape or a disc shape as shown in the figures. For example, the fuel cell tubes 18 may be positioned in any of a number of configuration including tube rays, tube bundles, and individual tubes. Further, it should be realized that various shapes and positions of the outlets 16 may be utilized. For example, the outlets 16 may be arranged in various patterns and formations to direct fuel to fuel cell tubes 18 configured in various positions.
Referring to
The manifold member 10 may also include an active cooling mechanism associated with the manifold to regulate a temperature of the manifold. Various active cooling mechanisms including fans and blowers may be utilized to maintain a temperature range of the manifold 10.
Referring to
Referring to
The manifold member 10 as described above has a compact shape and design that allows for positioning of a manifold member 10 closely to the fuel cell tubes 18 and allows for the mounting of circuit boards 24 outside of a hot zone of the fuel cell system 15. Additionally, the fuel cell system 15 provides passive fuel distribution and flow control such that a substantially similar amount of fuel is routed to each of the fuel cell tubes 18.
Further, the manifold member 10 also provides a mechanically compliant manifold member 10 allowing variations in the position of the manifold member 10 relative to the fuel cell tubes 18. The fuel cell system 15 includes internal reformers 52 that heat fuel inside the fuel cell tubes 18, thereby allowing a low-temperature seal between the fuel cell tubes and the manifold member 10.
The invention has been described in an illustrative manner. It is to be understood that the terminology which has been used is intended to be in the nature of words of description, rather than limitation. Many modifications and variations of the invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the invention may be practiced other than as specifically described.
The present application claims priority to U.S. Provisional Application No. 61/206,483, which is hereby incorporated by reference herein in its entirety.
This invention was made with government support under contract number W909MY-08-C-0025, awarded by the Department of Defense. The government has certain rights in this invention.