This application is based on and claims priority under 35 U.S.C. §119 to Japanese Patent Application 2011-011052, filed on Jan. 21, 2011, the entire content of which is incorporated herein by reference.
This disclosure generally relates to a fuel cell system.
A known fuel cell system such as disclosed in JP2008-243594A (hereinafter referred to as Reference 1) includes a fuel cell generating an electric power by being supplied with an anode fluid and a cathode fluid, an evaporating portion evaporating water so as to generate water vapor, and a reforming portion reforming a fuel by using the water vapor generated at the evaporating portion to thereby form an anode fluid. The fuel cell system further includes a tank storing the water supplied to the evaporating portion, a water supply passage connecting the tank and the evaporating portion so as to supply the water in the tank to the evaporating portion, and a pump provided at the water supply passage so as to transmit the water in the tank to the evaporating portion.
A volume of the water transmitted or supplied to the evaporating portion (i.e., a water supply volume) per time unit (1 minute) is small and thus is required to be controlled highly accurately. In a case where the water supply volume per time unit fluctuates, a flow volume of the water vapor generated from the water and a flow volume of anode gas (a hydrogen containing gas) reformed from the fuel by means of the water vapor are influenced. Further, a power generation performance of the fuel cell is influenced. Therefore, a stepping motor driven on a basis of the number of input pulses has been recently used as a drive source to drive the pump.
JP03-11998A (hereinafter referred to as Reference 2) and JP11-41987A (hereinafter referred to as Reference 3) each discloses a technique to control a driving of a stepping motor, though the technique is not related to the fuel cell system. Reference 2 discloses a stepping motor drive control method and unit. According to Reference 2, various operations such as a sheet transfer, a highly accurate reading, and printing are performed while achieving a variable speed in a wide speed range. In an office automation equipment, for example, in a fax machine, a sheet is transferred by plural steps in one unit (corresponding to one line) to thereby restrain an operation noise and a vibration at a time of the sheet transfer. Reference 3 discloses a stepping motor drive control method and apparatus using a variable step angle. According to Reference 3, without a usage of a micro-step control, the variable step angle and an operation pulse train are controlled so as to decrease the vibration and the operation noise in the same way as the micro-step control.
As mentioned above, the stepping motor is effective as the drive source to drive the pump. However, because the stepping motor is driven on a basis of the step angle, the stepping motor is likely to generate a resonance that induces a harmful vibration. The stepping motor includes a resonance frequency (a natural frequency) based on a dynamic mass and a spring constant. In a case where the resonance frequency exists in a range of rotations of the stepping motor, the resonance may occur at the stepping motor and therefore the harmful vibration may occur.
In a case where the harmful vibration occurs at the stepping motor during an operation of the fuel cell system, water supply characteristics of the pump driven by the stepping motor are influenced, which may deteriorate the accuracy of the water supply volume of the pump per time unit. In a case where the water supply volume per time unit fluctuates relative to a target water supply volume, the volume of the water vapor generated from the water fluctuates relative to a target flow volume of the water vapor. As a result, it may be difficult to stably maintain the power generation performance of the fuel cell for a long time period.
A need thus exists for a fuel cell system which is not susceptible to the drawback mentioned above.
According to aspect of this disclosure, a fuel cell system includes an evaporating portion evaporating water to generate a water vapor, a reforming portion forming an anode fluid by reforming a fuel by using the water vapor generated at the evaporating portion, a fuel cell generating an electric power by being supplied with the anode fluid and a cathode fluid, a tank storing the water supplied to the evaporating portion, a water supply passage connecting the tank and the evaporating portion and allowing the water in the tank to be supplied to the evaporating portion, a water supply source provided at the water supply passage to transmit the water in the tank to the evaporating portion, a stepping motor driving the water supply source, and a control portion driving the stepping motor to transmit the water in the tank to the evaporating portion. The control portion performs a harmful vibration restraining process to change a resonance frequency of the stepping motor by changing the number of steps per rotation of the stepping motor based on a volume of the water transmitted to the evaporating portion per time unit.
According to another aspect of this disclosure, a fuel cell system includes an evaporating portion evaporating water to generate a water vapor, a reforming portion forming an anode fluid by reforming a fuel by using the water vapor generated at the evaporating portion, a fuel cell generating an electric power by being supplied with the anode fluid and a cathode fluid, a tank storing the water supplied to the evaporating portion, a water supply passage connecting the tank and the evaporating portion and allowing the water in the tank to be supplied to the evaporating portion, a water supply source provided at the water supply passage to transmit the water in the tank to the evaporating portion, a stepping motor driving the water supply source, and a control portion driving the stepping motor to transmit the water in the tank to the evaporating portion. The control portion drives the stepping motor based on the number of steps of the stepping motor different from the number of steps of the stepping motor that occurs in a range where the number of rotations of the stepping motor is greater than a predetermined threshold value in a case where the number of rotations of the stepping motor per time unit is greater than the predetermined threshold value. The control portion drives the stepping motor based on the number of steps of the stepping motor different from the number of steps of the stepping motor that occurs in a range where the number of rotations of the stepping motor is equal to or smaller than the predetermined threshold value in a case where the number of rotations of the stepping motor per time unit is equal to or smaller than the predetermined threshold value.
According to still another aspect of this disclosure, a fuel cell system includes an evaporating portion evaporating water to generate a water vapor, a reforming portion forming an anode fluid by reforming a fuel by using the water vapor generated at the evaporating portion, a fuel cell generating an electric power by being supplied with the anode fluid and a cathode fluid, a tank storing the water supplied to the evaporating portion, a water supply passage connecting the tank and the evaporating portion and allowing the water in the tank to be supplied to the evaporating portion, a water supply source provided at the water supply passage to transmit the water in the tank to the evaporating portion, a stepping motor driving the water supply source, and a control portion driving the stepping motor to transmit the water in the tank to the evaporating portion. The control portion changes the number of steps per rotation of the stepping motor based on a volume of the water transmitted to the evaporating portion per time unit.
The foregoing and additional features and characteristics of this disclosure will become more apparent from the following detailed description considered with the reference to the accompanying drawings, wherein:
A first embodiment will be explained with reference to
In
The stepping motor 82 includes a rotor portion 82a rotating the pump 80, a first excitation winding portion 810 to which a plus phase A and a minus phase A are supplied so as to rotate the rotor portion 82a at an axis thereof, and a second excitation winding portion 820 to which a plus phase B and a minus phase B are supplied so as to rotate the rotor portion 82a at the axis thereof. The first excitation winding portion 810 and the second excitation winding portion 820 of the stepping motor 82 are connected to a power source 850 and to respective ports of the stepping motor control circuit 109. The microcomputer 108 outputs a drive command signal CLK to the stepping motor control circuit 109. The microcomputer 108 also outputs a mode change signal SA to the stepping motor control circuit 109 so as to change a control mode of the stepping motor 82. The control mode of the stepping motor 82 corresponds to a step angle of the stepping motor 82 that is specified to be 1/n of the basic step angle (full step angle). Specifically, the control mode of the stepping motor 82 includes a ¼ mode where the step angle of the stepping motor 82 is ¼ of the basic step angle and a 1/16 mode where the step angle of the stepping motor 82 is 1/16 of the basic step angle. In the stepping motor 82, the basic step angle (full step angle) is basically determined on a basis of the number of phases and the number of gears of a rotor of the stepping motor 82. In addition, in the micro-step control, an electric current supplied to the first and second excitation winding portions 810 and 820 is not simply controlled by turning-on or turning-off. Specifically, a current ratio of the first and second excitation winding portions 810 and 820 is finely changed. The rotor is therefore rotatable at the step angle that is obtained by further finely dividing the basic step angle (full step angle). According to the micro-step control, the number of steps per rotation of the stepping motor 82 is changeable. As a result, a resonance frequency of the stepping motor 82 is changeable and variable. The resonance frequency is thus avoidable from an operation range (i.e., a rotation range) of the stepping motor 82 to thereby inhibit a resonance thereof.
A vertical axis in
A second embodiment basically includes the same configuration and effect as those of the first embodiment.
As illustrated in
According to the present embodiment, based on the magnitude of the water supply volume, i.e., the revolutions of the pump 80, the control mode of the stepping motor 82 is changed so as to control the step angle of the stepping motor 82. Specifically, the number of steps per rotation of the stepping motor 82 is controllable. As a result, the resonance frequency of the stepping motor 82 is changeable. The resonance frequency is avoidable from the operation range of the stepping motor 82, thereby restraining the resonance and the resulting harmful vibration of the stepping motor 82. While the influence caused by the harmful vibration of the stepping motor 82 is being avoided, the water supply accuracy of the pump 80 is highly accurately controlled. Even when the water supply volume per time unit is extremely small, the flow volume of the water is highly accurately controllable. Thus, the volume of the water vapor generated at the evaporating portion 2 is highly accurately controlled. In this case, lack of water such as coking, and excess water such as a reduction in a reforming catalyst activity at the reforming portion 3 may be eliminated. Specifically, the coking occurs when carbon resulting from the fuel supplied to the reforming portion 3 is deposited on a surface of the reforming catalyst of the reforming portion 3, thereby decreasing a durability of the reforming catalyst.
As understood from
A third embodiment will be explained with reference to
On the other hand, in a case where the water supply volume increases to W4 or W5, the revolutions of the pump 80 increase to 40 rpm or 50 rpm. In this case, the control mode of the stepping motor 82 is changed to the 1/16 mode from the ¼ mode. At this time, the noise level is limited to 38 dB.
According to the third embodiment, in a case where the water supply volume fluctuates, i.e., the revolutions of the pump 80 fluctuate, the control mode of the stepping motor 82 is changed so as to adjust the step angle of the stepping motor 82 on a basis of the water supply volume, i.e., the revolutions of the pump 80. As a result, the resonance frequency of the stepping motor 82 is avoidable so that the resonance of the stepping motor 82 is restrained, which inhibits the harmful vibration of the stepping motor 82.
According to the third embodiment, while the influence of the harmful vibration resulting from the resonance of the stepping motor 82 is being inhibited, the pump 80 is highly accurately controlled. Therefore, the water flow volume is highly accurately controllable even when the water flow volume is extremely small. The volume of the water vapor generated at the evaporating portion 2 is highly accurately controlled. In this case, the lack of water such as the coking and the excess water such as the reduction in the reforming catalyst activity at the reforming portion 3 are inhibited.
A fourth embodiment basically includes the same configuration and effect as those of the second embodiment. A difference of the fourth embodiment from the second embodiment will be mainly explained. According to the fourth embodiment, the operation range of the stepping motor 82 is from 10 rpm to 60 rpm and excluding 60 rpm. In a case where the water supply volume is W1, W2, or W3 while the revolutions of the pump 80 are 10 rpm, 20 rpm, or 30 rpm, the control mode of the stepping motor 82 is specified to be in a ⅛ mode. On the other hand, in a case where the water supply volume increases to W4 or W5, the revolutions of the pump 80 increase to 40 rpm or 50 rpm. In this case, the control mode of the stepping motor 82 is changed to the 1/16 mode from the ⅛ mode.
A fifth embodiment will be explained with reference to
The fuel cell system may be installed at various types of places such as on a hard ground or a soft ground. Specifically, the fuel cell system may be installed at a concrete wall, an asphalt wall, a soil area, a sandy area, or a wooden surface, for example. In addition, the fuel cell system may be installed in a state where a neighboring structure is a concrete wall, a cement wall, a wooden wall, or a plant, for example. Further, a distance between the fuel cell system and the neighboring structure may be various. Furthermore, the neighboring structure may not be present. Therefore, an environment of the place where the fuel cell system is installed such as an elastic modulus of the installation place may affect the resonance frequency of the stepping motor 82.
Therefore, according to the fifth embodiment, in a state where the number of partitions of the basic step angle is defined to be “n”, the microcomputer 108 functioning as the control portion incorporates a storage portion 200 storing a step angle partition number information where n is equal to or greater than two. Further, a selection operating portion 120 is connected to the microcomputer 108 so as to select the arbitrary number (the appropriate number) of partitions from the step angle partition number information stored at the storage portion 200 based on the place where the fuel cell system is installed (i.e., the installation place of the fuel cell system) and to change the number of steps per rotation of the stepping motor 82. A signal selected by the selection operating portion 120 is input to the microcomputer 108. In this case, a manufacturer, a seller, an installation person, a maintenance person, a user, and the like of the fuel cell system operate the selection operating portion 120 to thereby select the arbitrary number of partitions depending on the installation place of the fuel cell system and change the number of steps per rotation of the stepping motor 82. Thus, because the resonance frequency of the stepping motor 82 is changeable, the harmful vibration resulting from the resonance of the stepping motor 82 is restrained. The number 2, 4, 8, 12, 16, or the like is applicable to “n”. The storage portion 200, which is mounted at the microcomputer 108, includes an area storing information related to the number of partitions of the basic step angle (i.e., the number of steps per rotation of the stepping motor 82) in which n is equal to or greater than two. The manufacturer, the seller, the installation person, the maintenance person, the user, and the like of the fuel cell system operate the selection operating portion 120 so that the arbitrary number of partitions is selected from the information related to the number of partitions of the basic step angle stored in the storage portion 200 of the microcomputer 108 based on the installation place of the fuel cell system.
Accordingly, even in a state where the control mode of the stepping motor 82 is specified to be in the ¼ mode in the operation range of the stepping motor 82, the control mode is changeable to a ½ mode or the ⅛ mode depending on the installation place of the fuel cell system. In addition, even in a state where the control mode of the stepping motor 82 is specified to be in the 1/16 mode in the operation range of the stepping motor 82, the control mode is changeable to the ⅛ mode or a 1/32 mode depending on the installation place of the fuel cell system.
Further, even when the fuel cell system that is once installed in one place is moved to another place, at least one of the manufacturer, the seller, the installation person, the maintenance person, the user, and the like of the fuel cell system operate the selection operating portion 120 to thereby select the arbitrary number of partitions of the basic step angle depending on the installation place of the fuel cell system and change the control mode. Therefore, depending on the installation place of the fuel cell system, the resonance frequency is avoidable from the operation range of the stepping motor 82.
The volume of the water transmitted to the evaporating portion 2 per time unit (one minute) may be small such as within a range from 0.1 cc to 20 cc. Because of such small volume, the harmful vibration caused by the resonance of the stepping motor 82 influences an accuracy of the pump 80 to transmit the water and the volume of the water transmitted per time unit. The volume of the water transmitted per time unit may fluctuate accordingly. In this case, the flow volume of the water vapor generated from the water per time unit used for reforming may fluctuate. Further, the flow volume of the anode gas per time unit may fluctuate, the anode gas serving as a hydrogen-containing gas reformed by the water vapor at the reforming portion 3 and generated at the reforming portion 3.
In the harmful vibration restraining process, the control portion 100 changes the number of partitions of the basic step angle of the stepping motor 82 based on the volume of the water in the tank 4 sent to the evaporating portion 2 per time unit, thereby restraining the harmful vibration of the stepping motor 82. The change of the number of partitions of the basic step angle results in the change of the number of steps per rotation of the stepping motor 82.
In addition, in the harmful vibration restraining process, the control portion 100 alternately selects and switches between a first area where the number of steps per rotation of the stepping motor 82 is small and a second area where the number of steps per rotation of the stepping motor 82 is large, in association with the increase of the volume of the water transmitted to the evaporating portion 2 per time unit. The resonance frequency of the stepping motor 82 is changed to thereby restrain the harmful vibration caused by the resonance of the stepping motor 82.
Further, in the harmful vibration restraining process, the control portion 100 alternately selects and switches between the first area where n is relatively small and the second area where n is relatively large, in association with the increase of the volume of the water transmitted to the evaporating portion 2 per time unit. The resonance frequency of the stepping motor 82 is changed to thereby restrain the harmful vibration caused by the resonance of the stepping motor 82. Depending on the number of phases or the number of gears of a rotor of the stepping motor 82, n is desirably equal to multiples of two. Alternatively, n is desirably equal to multiples of four such as 4, 8, 12, 16, 20, 24, 28, and 32. At this time, in a state where the step angle is indicated by θs (°) and the number of steps is indicated by S, an equation of θs=360/S is obtained. Thus, in association with a decrease of the step angle, the number of steps per rotation of the stepping motor 82 increases. In association with an increase of the number of partitions of the basic step angle, the number of steps per rotation of the stepping motor 82 increases.
Accordingly, a usage condition of the stepping motor 82 is specified so as to vary the resonance frequency (natural frequency) causing the harmful vibration of the stepping motor 82 so as to avoid the resonance frequency from the operation range of the stepping motor 82, and to restrain the harmful vibration caused by the resonance of the stepping motor 82. The influence to the pump 80 is restrained accordingly. The volume of the water transmitted per time unit basically corresponds to the flow volume of the water vapor per time unit generated at the evaporating portion 2 and to the power generation output of the fuel cell system. Thus, in a case where the volume of the water supply or transmission of the pump 80 is influenced, the power generation performance of the fuel cell system may fluctuate.
In the harmful vibration restraining process, in a state where the number of partitions of the basic step angle is defined to be “n”, the control portion 100 sequentially selects and switches between the first area where n is relatively small (i.e., the number of steps per rotation of the stepping motor 82 relatively decreases) and the second area where n is relatively large (i.e., the number of steps per rotation of the stepping motor 82 relatively increases), in association with the increase of the volume of the water transmitted to the evaporating portion 2 per time unit. The number of steps per rotation of the stepping motor 82 is changed to thereby change the resonance frequency of the stepping motor 82 and the harmful vibration caused by the resonance of the stepping motor 82. In association with the increase of n, the number of steps per rotation of the stepping motor 82 increases. Accordingly, the usage condition of the stepping motor 82 is specified so that the resonance frequency of the stepping motor 82 causing the harmful vibration is deviated from the operation range of the stepping motor 82 so as to restrain the harmful vibration caused by the resonance of the stepping motor 82.
The fuel cell system includes the storage portion 200 storing the step angle partition number information where n is equal to or greater than two, and the selection operating portion 120 selecting the arbitrary number of partitions from the step angle partition number information stored at the storage portion 200 based on the place where the fuel cell system is mounted or installed. In this case, the manufacturer, the seller, the installation person, the maintenance person, the user, and the like of the fuel cell system operates the selection operating portion 120 to thereby select the arbitrary number of partitions depending on the installation place of the fuel cell system. At this time, because the resonance frequency (the natural frequency) of the stepping motor 82 is changeable, the harmful vibration caused by the resonance of the stepping motor 82 may be easily restrained. As mentioned above, depending on the number of phases or the number of gears of a rotor of the stepping motor 82, n is desirably equal to multiples of two. Alternatively, n is desirably equal to multiples of four such as 4, 8, 12, 16, 20, 24, 28, and 32. The storage portion 200 includes the area storing information related to the number of partitions of the basic step angle (i.e., the number of steps per rotation of the stepping motor 82) in which n is equal to or greater than two. The manufacturer, the seller, the installation person, the maintenance person, the user, and the like of the fuel cell system operates the selection operating portion 120 so that the arbitrary number of partitions is selected from the information related to the number of partitions of the basic step angle stored in the storage portion 200 based on the installation place of the fuel cell system. The influence caused by the installation place of the fuel cell system may be easily restrained.
A sixth embodiment will be explained with reference to
Applications of the fuel cell system according to the aforementioned embodiments will be explained with reference to
As illustrated in
As illustrated in
According to the aforementioned embodiments, the stepping motor 82 driving the pump 80 is rotatable in both forward and reverse directions. Specifically, the stepping motor 82 is switchable between a normal mode where the stepping motor 82 rotates in the forward direction so as to send the water in the tank 4 from the outlet port 4p to the inlet port 21 of the evaporating portion 2, and a reverse mode where the stepping motor 82 rotates in the reverse direction so as to return the water in the water supply passage 8 via the outlet port 4p to the tank 4. The control portion 100 is provided to control the stepping motor 82 via a drive circuit. The control portion 100 controls the pump 80 via the stepping motor 82. Further, the control portion 100 controls the cathode pump 71, a hot water storage pump 79 (to be explained later), and the fuel pump 80 via respective motors driving the pumps 71, 79, and 60.
In a case where the pump 80 is driven in the normal mode during the operation of the fuel cell system, the water in the tank 4 is sent from the outlet port 4p to the inlet port 21 of the evaporating portion 2 through the water supply passage 8. The water is then heated at the evaporating portion 2 to form the water vapor. In a case where the fuel is a methane fuel, the generation of the hydrogen containing gas (anode fluid) by the reforming using the water vapor is considered to occur on a basis of a formula (1) below. At this time, however, the fuel is not limited to the methane fuel.
CH4+2H2O→4H2+CO2
CH4+H2O→3H2+CO (1)
The water vapor moves to the reforming portion 3 together with the fuel supplied from the fuel passage 6. At this time, the gaseous fuel is desirable; however, the liquid fuel may be acceptable in some cases. The fuel in the reforming portion 3 is reformed by the water vapor so as to form the anode fluid (the hydrogen containing gas). The anode fluid is supplied to the anode 10 of the fuel cell 1 via an anode fluid passage 73. Further, the cathode fluid (an oxygen containing gas, i.e., air in the case 5) is supplied to the cathode 11 of the fuel cell 1 via the cathode fluid passage 70. As a result, the fuel cell 1 generates an electric power.
In the aforementioned power generation reaction, it is basically considered that a reaction of a formula (2) occurs at the anode 10 supplied with the hydrogen containing gas as the anode gas. In addition, it is basically considered that a reaction of a formula (3) occurs at the cathode 11 supplied with the air (oxygen) as the cathode gas. Oxygen ion (O2−) generated at the cathode 11 conducts electrolyte from the cathode 11 to the anode 10.
H2+O2−→H2O+2e− (2)
In a case where CO is contained: CO+O2−→CO2+2e−
½O2+2e−→O2− (3)
Anode off-gas after the power generation reaction includes hydrogen that has not been used in the power generation reaction. Cathode off-gas includes unreacted oxygen in the power generation reaction. The anode off-gas and the cathode off-gas are discharged to the combusting portion 105 and are burnt thereat. The anode off-gas and the cathode off-gas after being burnt are formed into the exhaust gas. The exhaust gas, which flows through the exhaust combustion gas passage 75 via a gas passage of a heat exchanger 76, is discharged to the outside of the case 5 via a discharge port formed at an end of the exhaust combustion gas passage 75. The heat exchanger 76 having a condensation function is provided at the exhaust combustion gas passage 75. A hot water storage passage 78 connected to a hot water storage tank 77 is connected to the heat exchanger 76. The hot water storage pump 79 is provided at the hot water storage passage 78. The hot water storage passage 78 includes an outward passage 78a and an inward passage 78c. A low temperature water in the hot water storage tank 77 is discharged from a discharge port 77p of the hot water storage tank 77 by the driving of the hot water storage pump 79 so as to flow through the outward passage 78a and is heated at the heat exchanger 76 by a heat exchange function thereof. The water heated by the heat exchanger 76 is returned to the hot water storage tank 77 from a return port 77i by flowing through the inward passage 78c. Accordingly, the hot water is obtained at the hot water storage tank 77. The water vapor included in the aforementioned exhaust gas from the fuel cell 1 is condensed at the heat exchanger 76 to form condensed water. The condensed water is supplied to a purification portion 43 due to the effect of gravity, for example, via a condensation water passage 42 extending from the heat exchanger 76. Because the purification portion 43 includes a water purifier 43a such as an ion-exchange resin, an impure substance contained in the condensed water is removed. The water where the impure substance is removed moves to the tank 4 and is stored thereat. When the pump 80 is driven in the normal mode, the water in the tank 4 is supplied to the evaporating portion 2 at the high temperature via the water supply passage 8 and is then supplied to the reforming portion 3 after the water turns to the water vapor at the evaporating portion 2. The water (water vapor) is consumed at the reforming portion 3 in the reforming reaction for reforming the fuel.
As illustrated in
In a case where the harmful vibration of the stepping motor 82 occurs when the fuel cell system is operated, water supply characteristics of the pump 80 driven by the stepping motor 82 are influenced and therefore the water supply volume per time unit by the pump 80 is inhibited from being maintained highly accurately. When the water supply volume per time unit fluctuates relative to a target water supply volume, variations in the volume of the water vapor formed by the water relative to a target volume of the water vapor increases. Thus, it is difficult for the power generation performance of the fuel cell 1 to be stably obtained for a long time period. Further, the water surface detected by the water sensor 87 in the water supply passage 8 may vibrate or heave because of the aforementioned harmful vibration. In this case, a detection accuracy of the water sensor 87 detecting the water surface may be deteriorated.
According to the aforementioned embodiments, the control mode of the stepping motor 82 is changed so that the resonance frequency is deviated from the operation range of the stepping motor 82 where the stepping motor 82 actually rotates. Thus, the harmful vibration caused by the resonance of the stepping motor 82 is avoidable. As a result, the vibration of the water surface in the water supply passage 8 detected by the water sensor 87 is effectively restrained. The detection accuracy of the water sensor 87 is enhanced.
The first to sixth embodiments are not limited to have the aforementioned structures and applications and may be appropriately modified. The heating portion 40 is provided at the tank 4 according to the first to sixth embodiments. Alternatively, the heating portion 40 may be provided at the condensation water passage 42. The fuel cell 1 may be a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), or any other types of fuel cells such as a molten carbonate fuel cell. That is, the fuel cell at least includes the evaporating portion to form the water vapor from the water so as to reform the fuel in gas phase or liquid phase by the water vapor, the water supply source supplying the water to the evaporating portion, and the stepping motor driving the pump.
The fuel cell system includes the fuel cell 1 generating the electric power while being supplied with the anode fluid and the cathode fluid, the evaporating portion 2 evaporating the water so as to form the water vapor, the reforming portion 3 reforming the fuel by the water vapor generated at the evaporating portion 2 so as to form the anode fluid, the tank 4 storing the water supplied to the evaporating portion 2, the water supply passage 8 connecting the tank 4 and the evaporating portion 2 so as to supply the water in the tank 4 to the evaporating portion 2, the pump 80 provided at the water supply passage 8 so as to send the water in the tank 4 to the evaporating portion 2, the stepping motor 82 driving the pump 80, and the control portion 100 driving the pump 80. The control portion 100 includes the storage portion 200 storing the information of the number of partitions of the basic step angle where n is equal to or greater than two in a state where the number of partitions of the basic step angle is defined to be n, and the selection operating portion 120 selecting the arbitrary number of partitions from the information of the number of partitions of the basic step angle stored at the storage portion 200 depending on the installation place of the fuel cell system. In this case, depending on the installation place of the fuel cell system, the manufacturer, the seller, the installation person, the maintenance person, the user, and the like of the fuel cell system selects the arbitrary number of partitions by operating the selection operating portion 120.
According to the aforementioned first to sixth embodiments, the control portion 100 performs the harmful vibration restraining process for changing the number of partitions of the basic step angle of the stepping motor 82 on a basis of the volume of the water in the tank 4 transmitted to the evaporating portion 2 per time unit. The resonance frequency of the stepping motor 82 that is actually rotating is changeable. As a result, the resonance is avoidable from the operation range of the stepping motor 82 that is actually rotating. Further, the harmful vibration caused by the resonance of the stepping motor 82 is avoidable. Thus, even when the revolutions of the stepping motor 82 per time unit are changed, the resonance of the stepping motor 82 is avoidable because the volume of the water in the tank 4 transmitted to the evaporating portion 2 per time unit is changeable. The harmful vibration caused by the resonance is restrained accordingly.
In addition, according to the aforementioned first to sixth embodiments, without a replacement with an expensive multi-phase stepping motor or a gear structure, the inexpensive stepping motor such as the stepping motor 82 achieves the change of the control mode, i.e., the number of steps, in the operation range of the stepping motor 82. Thus, the appropriate control mode, i.e., the appropriate number of steps is selected in the operation range of the stepping motor 82 on the basis of the revolutions of the stepping motor 82 at which the different resonance frequency is generated so as to avoid the resonance of the stepping motor 82. Thus, without the necessity to change a mechanical structure, the operation noise of the stepping motor 82 caused by the resonance is reduced simply by the change to the appropriate control mode, i.e., the number of steps.
According to the aforementioned first to sixth embodiments, the control portion 100 performs the harmful vibration restraining process to change the number of steps per rotation of the stepping motor 82 by changing the number of partitions of the basic step angle of the stepping motor 82 based on the volume of the water transmitted to the evaporating portion 2 per time unit.
Accordingly, the resonance frequency of the stepping motor 82 is changeable to thereby restrain the harmful vibration of the stepping motor 82. The change of the number of partitions of the basic step angle results in the change of the number of steps per rotation of the stepping motor 82.
Further, according to the aforementioned first to sixth embodiments, the volume of the water transmitted to the evaporating portion 2 per time unit falls within a range from 0.1 cc to 20 cc.
Furthermore, according to the aforementioned first to sixth embodiments, in a state where the number of partitions of the basic step angle of the stepping motor 82 is defined to be n, the control portion 100 alternately selects the first range where n is relatively smaller and the second range where n is relatively greater in association with an increase of the volume of the water transmitted to the evaporating portion 2 per time unit:
Accordingly, the resonance frequency of the stepping motor 82 is changeable to thereby restrain the harmful vibration caused by the resonance of the stepping motor 82.
Furthermore, according to the aforementioned fifth embodiment, in a state where the number of partitions of the basic step angle of the stepping motor 82 is defined to be n, the control portion 100 includes the storage portion 200 storing information of the number of partitions of the basic step angle in which n is equal to or greater than two and the selection operating portion 120 selecting the arbitrary number of partitions from the information of the number of partitions of the basic step angle stored in the storage portion 200 depending on a place where the fuel cell system is installed.
Accordingly, the manufacturer, the seller, the installation person, the maintenance person, the user, and the like of the fuel cell system operate the selection operating portion 120 so that the arbitrary number of partitions is selected from the information related to the number of partitions of the basic step angle stored in the storage portion 200 based on the installation place of the fuel cell system.
Furthermore, according to the aforementioned first to sixth embodiments, in a case where the number of rotations of the stepping motor 82 per time unit is greater than the predetermined threshold value C, the control portion 100 drives the stepping motor 82 based on the number of steps of the stepping motor 82 different from the number of steps of the stepping motor 82 that occurs in a range where the number of rotations of the stepping motor 82 is greater than the predetermined threshold value C.
Accordingly, the harmful vibration caused by the resonance is restrained.
Furthermore, according to the aforementioned first to sixth embodiments, in a case where the number of rotations of the stepping motor 82 per time unit is equal to or smaller than the predetermined threshold value C, the control portion 100 drives the stepping motor 82 based on the number of steps of the stepping motor 82 different from the number of steps of the stepping motor 82 that occurs in a range where the number of rotations of the stepping motor 82 is equal to or smaller than the predetermined threshold value C.
Accordingly, the harmful vibration caused by the resonance is restrained.
The principles, preferred embodiment and mode of operation of the present invention have been described in the foregoing specification. However, the invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. Further, the embodiments described herein are to be regarded as illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such variations, changes and equivalents which fall within the spirit and scope of the present invention as defined in the claims, be embraced thereby.
Number | Date | Country | Kind |
---|---|---|---|
2011-011052 | Jan 2011 | JP | national |