This application is based on and claims priority under 35 U.S.C. §119 to Japanese Patent Application 2010-282961, filed on Dec. 20, 2010, the entire content of which is incorporated herein by reference.
This disclosure generally relates to a fuel cell system.
A known fuel cell system generally includes a fuel cell, an evaporating portion evaporating water so as to generate water vapor, and a reforming portion reforming a fuel by using the water vapor generated at the evaporating portion to thereby form an anode fluid. The fuel cell system further includes a tank storing the water supplied to the evaporating portion, a supply passage supplying the water in the tank to the evaporating portion, and a pump provided at the supply passage so as to transmit the water. In a case where the pump is driven, the water stored within the tank is transmitted to the supply passage and is supplied to the evaporating portion at a high temperature, which results in the water vapor at the evaporating portion. The water vapor is supplied to the reforming portion so that the fuel is reformed by the water vapor and is formed into the anode fluid (a hydrogen containing gas). According to the aforementioned system, in a case of starting a power generating operation, timing to supply the water (the water vapor) to the reforming portion is important.
JP2008-243594A (which will be hereinafter referred to as Reference 1) discloses a fuel cell apparatus including a temperature sensor in a reformer. Then, whether water exists in the reformer or not is detected on a basis of an output value of the temperature sensor. In a case where the temperature sensor shows the temperature to be lower than an ambient temperature of a water supply portion provided within the reformer, it is determined that the water is stored or present in the reformer. In a case where the temperature sensor shows the temperature to be substantially equal to the ambient temperature of the water supply portion within the reformer, it is determined that the water is not stored or present in the reformer.
JP2008-159486A (which will be hereinafter referred to as Reference 2) discloses a fuel cell apparatus including a flow switch between a reformer and a shot pump that supplies water for reforming. The flow switch detects an intermittent flow from the shot pump and outputs a detection signal, based on which an amount of supply of the water per time unit is calculated.
JP2004-288505A (which will be hereinafter referred to as Reference 3) discloses a reformer for a fuel cell including a sensor that detects a change in water level in a tank for storing the water that serves as a source of water vapor. A feedback control is performed on a driving of a pump based on the change in water level in the tank to thereby adjust the flow amount of the water supplied to an evaporating portion of the reformer.
JP2005-276544A (which will be hereinafter referred to as Reference 4) discloses a fluid transmission control system including a pressure sensor within a tank where water serving as a source of water vapor is stored. The pressure sensor monitors a change in pressure of the water in the tank so that a feedback control is performed on a driving of a pump on a basis of a signal from the pressure sensor.
JP2008-273822A (which will be hereinafter referred to as Reference 5) discloses a fuel cell system in which water discharged from a pump that supplies water, serving as a source of water vapor, to a reformer is returned to a water tank at a start of driving the pump. Afterwards, a circuit is changed so as to transmit the water to the reformer to thereby restrain air contained in the water from flowing into the reformer at the start of the pump.
According to techniques disclosed in References 1 to 5, at the start of the power generating operation, timing to supply the water, which is formed into the water vapor for reforming the fuel, to the evaporating portion and further the reforming portion is important. In a case where the timing to supply the water to the evaporating portion and the reforming portion is delayed, a water supply to the evaporating portion is delayed, which may result in an excessively high temperature of the reforming portion. In this case, coking (i.e., carbonization of fuel) may occur at the reforming portion, which may lead to a deterioration of a reforming catalyst. On the other hand, in a case where the timing to supply the water to the evaporating portion and the reforming portion is relatively fast, an excessive water leakage may occur at the reforming portion, which may lead to a reduction in a reforming catalyst activity.
A need thus exists for a fuel cell system which is not susceptible to the drawback mentioned above.
According to an aspect of this disclosure, a fuel cell system includes a fuel cell including an anode and a cathode and generating an electric power in a state where an anode fluid is supplied to the anode while a cathode fluid is supplied to the cathode, a combusting portion starting a combustion by an ignition, an evaporating portion including an inlet port and generating a water vapor by evaporating water by a heat of the combusting portion, a reforming portion forming the anode fluid by reforming a fuel by using the heat of the combusting portion and the water vapor generated at the evaporating portion, a tank including an outlet port and storing the water supplied to the evaporating portion, a supply passage connecting the outlet port of the tank and the inlet port of the evaporating portion and allowing a supply of the water to the evaporating portion from the tank via the inlet port of the evaporating portion, a water sensor arranged at the supply passage and detecting a water level of the water positioned away from the inlet port of the evaporating portion by a predetermined distance, a water supply source provided at the supply passage and driven to transmit the water in the tank to the evaporating portion to generate the water vapor, and a control portion controlling the water supply source. At a start of a power generation of the fuel cell, the control portion instructs the water supply source to operate so that the water in the tank is supplied to the supply passage in a state where a water accommodating void is formed at the supply passage. The control portion performs a water level set process by controlling the operation of the water supply source so that the water level of the water in the supply passage is specified at a position away from the inlet port of the evaporating portion by the predetermined distance while monitoring the water level of the water in the supply passage based on a detection signal of the water sensor.
According to another aspect of this disclosure, a method of controlling a fuel cell system, the fuel cell system including a fuel cell including an anode and a cathode and generating an electric power in a state where an anode fluid is supplied to the anode while a cathode fluid is supplied to the cathode, a combusting portion starting a combustion by an ignition, an evaporating portion including an inlet port and generating a water vapor by evaporating water by a heat of the combusting portion, a reforming portion forming the anode fluid by reforming a fuel by using the heat of the combusting portion and the water vapor generated at the evaporating portion, a tank including an outlet port and storing the water supplied to the evaporating portion, a supply passage connecting the outlet port of the tank and the inlet port of the evaporating portion and allowing a supply of the water to the evaporating portion from the tank via the inlet port of the evaporating portion, a water sensor arranged at the supply passage and detecting a water level of the water positioned away from the inlet port of the evaporating portion by a predetermined distance, a water supply source provided at the supply passage and driven to transmit the water in the tank to the evaporating portion to generate the water vapor, and a control portion controlling the water supply source, the method includes a first step to supply the water in the tank to the supply passage by instructing the water supply source to operate by the control portion in a state where a water accommodating void is formed at the supply passage at a start of a power generation of the fuel cell and a second step to perform a water level set process by controlling the operation of the water supply source so that the water level of the water in the supply passage is specified at a position away from the inlet port of the evaporating portion by the predetermined distance while monitoring the water level of the water in the supply passage based on a detection signal of the water sensor.
The foregoing and additional features and characteristics of this disclosure will become more apparent from the following detailed description considered with the reference to the accompanying drawings, wherein:
A first embodiment will be explained with reference to
The reforming portion 3 is formed by a carrier such as ceramics on which a reforming catalyst is carried. The reforming portion 3 is arranged next to the evaporating portion 2 so as to constitute a reformer 2A together with the evaporating portion 2. The reformer 2A and the fuel cell 1 are surrounded by an insulated wall 19 to thereby form a power generation module 18. A reference temperature sensor 33 detecting a temperature of the reforming portion 3 is provided at an inner side of the reforming portion 3. In addition, an ignition portion 35 serving as a heater for igniting the fuel is provided at an inner side of the combusting portion 105. The ignition portion 35 may have any structure as long as the ignition portion 35 ignites the fuel in the combusting portion 105. A signal from the reference temperature sensor 33 is input to a control portion 100. The reference temperature corresponds to a temperature based on which it is determined whether or not a water level (a height) set process (which will be explainer later) is performed. The control portion 100 controls the ignition portion 35 to operate so that the combusting portion 105 is ignited and heated up. The control portion 100 includes an alarm 102.
In a power generating operation of the fuel cell system (the fuel cell 1), the reformer 2A is heated up within the insulated wall 19 so as to be suitable for a reforming reaction. In the power generating operation, the evaporating portion 2 is heated up so as to heat the water to obtain the water vapor. In a case where the fuel cell 1 is the SOFC, the anode exhaust gas discharged from the anode 10 and the cathode exhaust gas discharged from the cathode 11 are burnt at the combusting portion 105. As a result, the reforming portion 3 and the evaporating portion 2 are heated up at the same time. A fuel passage 6 through which the fuel from a fuel source 63 is supplied to the reformer 2A includes a fuel pump 60 and a desulfurizer 62. A cathode fluid passage 70 is connected to the cathode 11 of the fuel cell 1 so as to supply a cathode fluid (air) to the cathode 11. A cathode pump 71 is provided at the cathode fluid passage 70 so as to function as a supply source transmitting the cathode fluid.
As illustrated in
As illustrated in
The supply passage 8 is a passage through which the water stored in the tank 4 is supplied from the outlet port 4p of the tank 4 to the evaporating portion 2. A pump 80 functioning as a water supply source is provided at the supply passage 8 so as to send the water in the tank 4 from the outlet port 4p to the evaporating portion 2. A gear pump, for example, is applicable to the pump 80. The pump 80 is driven by an electric motor 82. Because the pump 80 has a high water sealing ability, even when the water is present at a downstream portion 8d of the pump 80 in the supply passage 8 arranged at a downstream side relative to a discharge port 80p of the pump 80, the water is basically restrained from leaking to an upstream portion 8u of the pump 80 in the supply passage 8 arranged at an upstream side of the pump 80. As illustrated in
According to the present embodiment, the motor 82 driving the pump 80 rotates in both forward and reverse directions. Specifically, the motor 82 is switchable between a normal mode where the motor 82 rotates in the forward direction so as to send the water in the tank 4 from the outlet port 4p to the inlet port 2i of the evaporating portion 2, and a reverse mode where the motor 82 rotates in the reverse direction so as to return the water in the supply passage 8 via the outlet port 4p to the tank 4. That is, the pump 80 driven by the motor 82 is switchable between the normal mode to send the water in the tank 4 to the evaporating portion 2 and the reverse mode to return the water in the supply passage 8 to the tank 4. The control portion 100 controls the motor 82 by means of a drive circuit. Any motors that are rotatable in the forward and reverse directions are applicable to the motor 82. For example, a stepping motor or a DC motor is desirable as the motor 82. The control portion 100 controls the pump 80 via the motor 82. Further, the control portion 100 controls the cathode pump 71, a hot water storage pump 79 (to be explained later), and the fuel pump 60 via respective motors driving the pumps 71, 79, and 60.
In a case where the pump 80 is driven in the normal mode during the operation of the fuel cell system, the water in the tank 4 is sent from the outlet port 4p thereof to the inlet port 2i of the evaporating portion 2 through the supply passage 8. The water is then heated at the evaporating portion 2 to form the water vapor. The water vapor moves to the reforming portion 3 together with the fuel supplied from the fuel passage 6. At this time, the gaseous fuel is desirable; however, the liquid fuel may be acceptable in some cases. The fuel in the reforming portion 3 is reformed by the water vapor so as to form an anode fluid (a hydrogen containing gas). The anode fluid is supplied to the anode 10 of the fuel cell 1 via an anode fluid passage 73. Further, the cathode fluid (an oxygen containing gas, i.e., air in the case 5) is supplied to the cathode 11 of the fuel cell 1 via the cathode fluid passage 70. As a result, the fuel cell 1 generates an electric power. An exhaust gas discharged from the fuel cell 1 is burnt at the combusting portion 105 and the resulting exhaust combustion gas is emitted to the air via the exhaust combustion gas passage 75.
A heat exchanger 76 having a condensation function is provided at the exhaust combustion gas passage 75. A hot water storage passage 78 connected to a hot water storage tank 77 is connected to the heat exchanger 76. The hot water storage pump 79 is provided at the hot water storage passage 78. The hot water storage passage 78 includes an outward passage 78a and an inward passage 78c. A low temperature water in the hot water storage tank 77 is discharged from a discharge port 77p of the hot water storage tank 77 by the driving of the hot water storage tank 79 so as to flow through the outward passage 78a and is heated at the heat exchanger 76 by a heat exchange function thereof. The water heated by the heat exchanger 76 is returned to the hot water storage tank 77 from a return port 77i by flowing through the inward passage 78c. Accordingly, the hot water is obtained at the hot water storage tank 77. The water vapor included in the aforementioned exhaust gas from the fuel cell 1 is condensed at the heat exchanger 76 to form condensed water. The condensed water is supplied to a purification portion 43 because of the effect of gravity, for example, via a condensed water passage 42 extending from the heat exchanger 76. Because the purification portion 43 includes a water purifier 43a such as an ion-exchange resin, an impure substance contained in the condensed water is removed. The water where the impure substance is removed moves to the tank 4 and is stored thereat. When the pump 80 is driven in the normal mode, the water in the tank 4 is supplied to the evaporating portion 2 at the high temperature via the supply passage 8 and is then supplied to the reforming portion 3 after the water turns to the water vapor at the evaporating portion 2. The water (water vapor) is consumed at the reforming portion 3 in the reforming reaction for reforming the fuel.
In a case where the power generating operation of the fuel cell system is stopped, the generation of the water vapor at the evaporating portion 2 is not necessary. Thus, the supply of the water in the tank 4 to the supply passage 8 is limited. In this case, the sealing ability of the pump 80 may be excellent. Thus, during a short time period after a time when the power generating operation of the fuel cell system is stopped (i.e., a stop time t10), the water in the downstream portion 8d at the downstream side of the discharge port 80p of the pump 80 in the supply passage 8 is restrained from immediately leaking to the upstream portion 8u at the upstream side of the pump 80. At this time, because of the structure of the pump 80 according to the present embodiment, the water in the downstream portion 8d is configured to leak to the upstream portion 8u by an extremely small amount per unit time in the supply passage 8. Therefore, when a long time period has elapsed after the stop time t10 of the operation of the fuel cell system, the water at the downstream portion 8d slowly and slightly leaks to the upstream portion 8u in the supply passage 8. As a result, a height position of the water level W10 of the water W1 maintained in the supply passage 8 may be gradually lowered from the predetermined position. Further, the water W1 at the downstream portion 8d in the supply passage 8 may evaporate, which leads to the decrease of the height position of the water level W10 relative to the predetermined position.
In the aforementioned case, when the power generating operation of the fuel cell system is resumed, timing to supply the water W1 to the evaporating portion 2 may change because of the decrease of the height position of the water level W10 of the water W1. When the timing to supply the water W1 to the evaporating portion 2 is delayed relative to a normal timing, the water supply to the evaporating portion 2 is delayed, which may lead to an extremely high temperature of the reforming portion 3. As a result, coking (i.e., carbonization of fuel) may occur at the reforming portion 3, which may induce a deterioration of the reforming catalyst. On the other hand, when the timing to supply the water W1 to the evaporating portion 2 is faster than the normal timing, excessive water leaking may occur at the evaporating portion 2 and/or the reforming portion 3. At this time, the activity of the reforming catalyst carried on the reforming portion 3 may be reduced.
Therefore, according to the present embodiment, when the power generating operation of the fuel cell system is resumed, the control portion 100 drives the pump 80 before the combusting portion 105 is ignited (i.e., before the ignition of the combusting portion 105 is allowed) in a state where a water accommodating void is formed in the supply passage 8. As a result, the water in the tank 4 is supplied to the supply passage 8 to thereby perform the water level set process. In the water level set process, the control portion 100 monitors the actual water level W10 of the water W1 in the supply passage 8 based on the detection signal of the water level sensor 87 and controls the driving of the pump 80 so that the water level W10 of the water W1 in the supply passage 8 is specified to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2. The vicinity of the inlet port 2i corresponds to a point on the supply passage 8 away from the inlet port 2i by a predetermined distance. Further, in the aforementioned case, the water level set process may be performed after the combusting portion 105 is ignited (i.e., after the ignition of the combusting portion 105 is allowed). Furthermore, a first step of the present embodiment includes supplying the water in the tank 4 to the supply passage 8 by instructing the pump 80 to operate by the control portion 100 in a state where the water accommodating void is formed at the supply passage 8 at the start of the power generation of the fuel cell 1 A second step of the present embodiment includes performing the water level set process by controlling the operation of the pump 80 so that the water level of the water in the supply passage 8 is specified at a position away from the inlet port 2i of the evaporating portion 2 by the predetermined distance while monitoring the water level of the water in the supply passage 8 based on the detection signal of the water level sensor 87.
In a case where the control portion 100 determines that the water is not present in the supply passage 8 based on the detection result of the water level sensor 87, the control portion 100 controls the pump 80 to operate in the normal mode so as to slowly and slightly supply the water in the tank 4 to the supply passage 8. On the other hand, in a case where the control portion 100 determines that the water is present in the supply passage 8 based on the detection result of the water level sensor 87 (i.e., the water level sensor 87 detects the water level), the control portion 100 then controls the pump 80 to stop operating in the normal mode. As a result, the control portion 100 specifies the water level W10 of the water W1 in the supply passage 8 to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2.
In a state where an overall length of the supply passage 8 extending from the outlet port 4p of the tank 4 to the inlet port 2i of the evaporating portion 2 is defined to be 100, the aforementioned predetermined distance (which is defined from the inlet port 2i of the evaporating portion 2 to the point on the supply passage 8) is indicated by a value in a range from 0.01 to 15 from the inlet port 2i of the evaporating portion 2 towards the tank 4. For example, the aforementioned predetermined distance is indicated by a value in a range from 0.1 to 10, or from 0.5 to 5.
According to the present embodiment, the control portion 100 controls the water level W10 of the water W1 in the supply passage 8 to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2. Then, the control portion 100 allows the ignition of the combusting portion 105 so as to start the operation of the fuel cell system. The fuel pump 80 is driven so that the fuel is supplied to the combusting portion 105 from the fuel passage 6 via the reforming portion 3, the anode 10, and the anode exhaust gas passage 103. In addition, the cathode pump 71 is driven to supply the air to the combusting portion 105 from the cathode fluid passage 70 via the cathode 11 and the cathode exhaust gas passage 104. Afterwards, the ignition portion 35 is turned on so as to ignite the combusting portion 105. In association with the ignition of the combusting portion 105, the combustion occurs so that the evaporating portion 2 is brought into the high temperature and thus the water becomes the water vapor, and the reforming portion 3 is brought into the high temperature. The evaporating portion 2 and the reforming portion 3 are at the temperatures suitable for the reforming reaction of the fuel. At this time, according to the present embodiment, the pump 80 is desirably controlled to operate in the reverse mode to thereby return the water in the supply passage 8 to the tank 4 in an early stage of the start of the water level set process. The supply passage 8 therefore becomes empty (i.e., the control portion 100 performs a return process). The empty state of the supply passage 8 corresponds to a basic state (a 0-point state) of the supply passage 8. In this case, a length and a volume of the supply passage 8 up to the aforementioned vicinity of the inlet port 2i of the evaporating portion 2 from the outlet port 4p of the tank 4 are known. Thus, a control of a driving time of the motor 82 and an amount of electric power supply to the motor 82 achieves the water level W10 of the water W1 to be specified to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 in the supply passage 8. A third step of the present embodiment includes returning the water in the supply passage 8 to the tank 4 by the pump 80 to operate in the reverse mode at the start of the water level set process.
When the water W1 remaining in the supply passage 8 is returned to the tank 4 as mentioned above, grit or dust, for example, is accumulated on a bottom portion of the tank 4. Thus, the grit or dust is restrained from being supplied to the reforming portion 3 via the evaporating portion 2, which further protects the reforming catalyst of the reforming portion 3, for example. Further, in a case where the water is maintained in the supply passage 8 for a long time period, quality of the water (the water W1) in the supply passage 8 may fluctuate. However, according to the present embodiment, the water W1 is returned to the tank 4 so as to be diluted by the water in the tank 4.
According to the present embodiment, when the combusting portion 105 is ignited and the power generating operation of the fuel cell system is started, the control portion 100 intermittently drives the pump 80 so that the water in the supply passage 8 is intermittently supplied to the evaporating portion 2. At this time, the control portion 100 may easily detect the presence of the water because of an intermittent detection signal from the water level sensor 87 during the power generating operation. Thus, a state where the pump 80 is appropriately driven and the water that becomes the water vapor is appropriately supplied to the evaporating portion 2 is intermittently detected by the control portion 100. At this time, however, the pump 80 may be continuously driven so that the water within the supply passage 8 is continuously supplied to the evaporating portion 2. Even in this case, the operation of the pump 80 causes the water in the tank 4 to be supplied to the supply passage 8. In addition, the operation of the pump 80 in the normal mode is controlled so that a target value of the water level W10 of the water W1 is specified to be the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 while the actual water level W10 of the water W1 in the supply passage 8 is being monitored on a basis of the detection signal of the water level sensor 87.
According to the present embodiment, a flow meter is not provided at the supply passage 8. This is because, for example, the flow meter is expensive, a foreign substance may be jammed in the flow meter, a wrong detection may be caused by a pulsation of the pump 80, or it may be difficult to measure a minimum flow volume (for example, 3 to 30 cc per minute or 0.5 to 30 cc per minute) of the water W1 per time unit of the fuel cell system. However, in some cases, the flow meter may be provided at the supply passage 8.
A second embodiment basically includes the same configuration and effect as those of the first embodiment. Therefore, the second embodiment will be explained with reference to
A third embodiment basically includes the same configuration and effect as those of the first and second embodiments. Therefore, the third embodiment will be explained with reference to
On the other hand, a drive time tc of the stepping motor 82s in the reverse mode and a total number of pulses (total pulse number) Nc of the electric power supplied to the stepping motor 82a in the reverse mode are specified so that the water W1 supplied up to the position in the vicinity of the inlet port 2i (where the water level is detected by the water level sensor 87) of the evaporating portion 2 in the supply passage 8 is returned to the tank 4 so that the supply passage 8 becomes the empty state (the basic state).
When the power generating operation of the fuel cell system is resumed, the control portion 100 drives the pump 80 in the normal mode before the combusting portion 105 is ignited (i.e., before the ignition of the combusting portion 105 is allowed) in a state where the water accommodating void is formed in the supply passage 8. As a result, the water in the tank 4 is supplied to the supply passage 8 to thereby perform the water level set process. In the water level set process, the control portion 100 monitors the actual water level W10 of the water W1 in the supply passage 8 based on the detection signal of the water level sensor 87 and controls the driving of the pump 80 so that the water level W10 of the water W1 in the supply passage 8 is specified to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2. That is, in a case where the control portion 100 determines that the water is not present in the supply passage 8 because of the detection result of the water level sensor 87, the control portion 100 controls the pump 80 to operate in the normal mode so as to slowly and slightly supply the water in the tank 4 to the supply passage 8. On the other hand, in a case where the control portion 100 determines that the water is present in the supply passage 8 because of the detection result of the water level sensor 87, the control portion 100 then controls the pump 80 to stop operating in the normal mode. As a result, the control portion 100 specifies the water level W10 of the water W1 in the supply passage 8 to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2.
According to the third embodiment, after the water level W10 of the water W1 in the supply passage 8 is specified to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2, the control portion 100 drives the fuel pump 60 so that the fuel is supplied to the reforming portion 3 from the fuel passage 6 and turns on the ignition portion 35 so that the combusting portion 105 is ignited. Then, in association with the ignition of the combusting portion 105, the reforming portion 3 is heated up to the temperature where the reforming reaction of the fuel is suitable.
A fourth embodiment basically includes the same configuration and effect as those of the first to third embodiments. Therefore, the fourth embodiment will be explained with reference to
A fifth embodiment will be explained with reference to
In a case where the value of the counter B is smaller than the threshold value Bx and the drain process is completed (i.e., Yes in S110), the drain process is successful. Upon completion of the drain process, a standby for a predetermined time Δte is obtained. Such standby is mainly secured for the switching between the normal mode and the reverse mode of the motor 82. Afterwards, the control portion 100 drives the motor 82 to rotate in the forward direction so as to bring the pump 80 in the normal mode. The water in the tank 4 is therefore supplied to the supply passage 8 in S116 and the counter A is incremented by one in S118. The control portion 100 determines whether or not the water level W10 of the water W1 in the supply passage 8 reaches the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 based on the signal from the water level sensor 87 in S120. When the water level W10 of the water W1 in the supply passage 8 does not reach the predetermined position (i.e., No in S120), the value of the counter is compared with a threshold value Ax in S122. When the water level W10 of the water W1 in the supply passage 8 does not reach the predetermined position (i.e., No in S120) and the value of the counter A is smaller than the threshold value Ax (Yes in S122), the pump 80 is continued to be driven in the normal mode in S116. In a case where the value of the counter A is equal to or greater than the threshold value Ax even when the water level sensor 87 is not turned on (i.e., the water level sensor 87 does not detect the water level), i.e., the water level W10 of the water W1 in the supply passage 8 does not reach the predetermined position (i.e., No in S122), the water leakage from the supply passage 8 and/or the breakage of the pump 80, for example, is assumed. Thus, the control portion 100 outputs an error signal for the water supply (water supply error signal) in S126. When it is determined that the water in the supply passage 8 reaches the predetermined position on a basis of the detection result of the water level sensor 87 (i.e., Yes in S120), the control portion 100 stops the rotation of the motor 82 in the forward direction and the driving of the pump 80 in the normal mode in S138. Afterwards, the control portion 100 outputs a signal for allowing the ignition of the combusting portion 105 in S140 so as to perform the other process in S142. The control portion 100 returns to the main routine accordingly.
A sixth embodiment basically includes the same configuration and effect as those of the first to fifth embodiments. Therefore, the sixth embodiment will be explained with reference to
Therefore, at the start of the power generation of the fuel cell system (the fuel cell 1) according to the present embodiment, because the decrease of the water level W10 of the water W1 in the supply passage 8 is small before an elapse of a first predetermined time t11 from the stop time t10 of the power generation of the fuel cell system, the control portion 100 allows the combusting portion 105 to be ignited while not performing the water level set process. At this time, because the water level set process is not conducted, the power generation is immediately started from the time when the command to start the power generation of the fuel cell system is output. A fourth step of the present embodiment includes allowing the ignition of the combusting portion 105 without performing the water level set process before the elapse of the first predetermined time t11 from the stop time t10.
On the other hand, after the elapse of the first predetermined time t11 (for example, a long time period such as three hours or more) from the stop time t10 of the power generation of the fuel cell system, the decrease of the water level W10 of the water W1 in the supply passage 8 is large. In this case, the decrease of the water level W10 of the water W1 in the supply passage 8 is not negligible. The control portion 100 desirably highly accurately recognizes the water level W10 of the water W1 in the supply passage 8. Therefore, after the elapse of the first predetermined time t11 from the stop time t10 of the power generation of the fuel cell system, the control portion 100 performs the water level set process. Then, after the water level W10 of the water W1 in the supply passage 8 is specified to the predetermined position, the fuel pump 60 is driven so as to supply the fuel to the reforming portion 3 and to ignite the combusting portion 105. A fifth step of the present embodiment includes performing the water level set process and then allowing the ignition of the combusting portion 105 after the elapse of the first predetermined time t11 from the stop time t10 at the start of the power generation of the fuel cell 1.
Therefore, according to the present embodiment, at the start of the power generation of the fuel cell system, the control portion 100 outputs a signal to allow the ignition of the combusting portion 105 in S212 while not performing the water level set process in S210 because the decrease of the water level W10 of the water W1 in the supply passage 8 is small when the elapsed time tm from the stop time t10 is shorter than the first predetermined time t11 (i.e., Yes in S208). Further, the control portion 100 performs the other process in S214 and then returns to the main routine. At this time, because the water level set process is not performed, the power generation of the fuel cell system is immediately performed after the command to start the power generation is output.
On the other hand, when the elapsed time tm from the stop time t10 is equal to or longer than the first predetermined time t11 (i.e., No, in S208), it is assumed that the decrease of the water level W10 of the water W1 in the supply passage 8 is large. At this time, the decrease of the water level W10 of the water W1 in the supply passage 8 is not negligible. Therefore, until it is confirmed that the water level W10 of the water W1 in the supply passage 8 reaches the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 based on the detection result of the water level sensor 87, the control portion 100 continues to perform the water level set process in S222 and S224. Then, when it is confirmed that the water level sensor 87 detects the water level so that the water level W10 of the water W1 in the supply passage 8 reaches the predetermined position in the vicinity of the inlet port 2i (i.e., Yes in S224), the control portion 100 outputs the signal to allow the ignition of the combusting portion 105 in S212. Further, the control portion 100 performs the other process in S214 to return to the main routine. In this case, because the water level set process is performed, the water level W10 of the water W1 in the supply passage 8 reaches the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2.
A seventh embodiment will be explained with reference to
On the other hand, in a case where the detection temperature Tx is lower than the threshold temperature T11, it is regarded that the detection temperature Tx of the reforming portion 3 is relatively low and the elapsed time from the stop time t10 is long so that the decrease of the water level W10 of the water W1 in the supply passage 8 is large. Thus, the control portion 100 performs the water level set process to specify the water level W10 of the water W1 in the supply passage 8 to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2. Thereafter, the control portion 100 allows the ignition of the combusting portion 105. At this time, depending on types of the reforming portion 3, the threshold temperature T11 may range from 100° C. to 110° C. However, the threshold temperature T11 is not limited to fall within the aforementioned range. A seventh step of the present embodiment includes performing the water level set process and then allowing the ignition of the combusting portion 105 in a case where the detection temperature Tx is smaller than the threshold temperature T11 at the start of the power generation of the fuel cell 1.
On the other hand, in a case where the detection temperature Tx of the reference temperature sensor 33 is smaller than the threshold temperature T11 (i.e., No in S308), it is assumed that the elapsed time from the stop time t10 is relatively long and therefore the decrease of the water level W10 of the water W1 in the supply passage 8 is large so as not to be negligible. Therefore, until the water level sensor 87 is confirmed to be turned on, i.e., until a state where the water level W10 of the water W1 in the supply passage 8 reaches the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 is confirmed, the control portion 100 performs the water level set process in S322 and S324. Afterwards, when the turn-on of the water level sensor 87 is confirmed, i.e., it is confirmed that the water level W10 of the water W1 in the supply passage 8 reaches the predetermined position (i.e., Yes in S324), the control portion 100 allows the ignition of the combusting portion 105 in S312 and performs the other process in S314 to thereafter return to the main routine. At this time, because the water level set process is performed, the water level W10 of the water W1 in the supply passage 8 reaches the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2.
An eighth embodiment basically includes the same configuration and effect as those of the first to seventh embodiments. Therefore, the eighth embodiment will be explained with reference to
A ninth embodiment basically includes the same configuration and effect as those of the first to eighth embodiments. Therefore, the ninth embodiment will be explained with reference to
The aforementioned first to ninth embodiments may be appropriately modified. The heating portion 40 is provided at the tank 4 according to the first to ninth embodiments. Alternatively, the heating portion 40 may be provided at the condensation water passage 42. Further alternatively, in a warm-temperature region, for example, the heating portion 40 may be eliminated. The fuel cell 1 may be a polymer electrolyte fuel cell (PEFC; an operation temperature is 70 to 100° C., for example), a phosphoric acid fuel cell (PAFC), or any other types of fuel cells. That is, the fuel cell at least includes the evaporating portion where the water vapor is formed from the water so as to reform the fuel in gas phase or liquid phase by the water vapor. The detection principle of the water level sensor 87 is not specifically limited. For example, a physical sensor or a chemical sensor that detects the water (the water level) is acceptable. The fuel may be city gas, propane gas, biogas, LPG, CNG, kerosene, gasoline or alcohol, for example. The water supply source is not limited to the pump 80 driven by the motor and may be any member having the water transport ability.
According to the aforementioned first to ninth embodiments, the fuel cell system includes the fuel cell 1 including the anode 10 and the cathode 11 and generating the electric power in a state where the anode fluid is supplied to the anode 10 while the cathode fluid is supplied to the cathode 11, the combusting portion 105 starting the combustion by the ignition, the evaporating portion 2 including the inlet port 2i and generating the water vapor by evaporating the water by the heat of the combusting portion 105, the reforming portion 3 forming the anode fluid by reforming the fuel by using the heat of the combusting portion 105 and the water vapor generated at the evaporating portion 2, the tank 4 including the outlet port 4p and storing the water supplied to the evaporating portion 2, the supply passage 8 connecting the outlet port 4p of the tank 4 and the inlet port 2i of the evaporating portion 2 and allowing the supply of the water to the evaporating portion 2 from the tank 4 via the inlet port 2i of the evaporating portion 2, the water level sensor 87 arranged at the supply passage 8 and detecting the water level W10 of the water positioned away from the inlet port 2i of the evaporating portion 2 by the predetermined distance, the pump 80 provided at the supply passage 8 and driven to transmit the water in the tank 4 to the evaporating portion 2 to generate the water vapor, and the control portion 100 controlling the pump 80. At the start of the power generation of the fuel cell 1, the control portion 100 instructs the pump 80 to operate so that the water in the tank 4 is supplied to the supply passage 8 in a state where the water accommodating void is formed at the supply passage 8. The control portion 100 performs the water level set process by controlling the operation of the pump 80 so that the water level W10 of the water in the supply passage 8 is specified at a position away from the inlet port 2i of the evaporating portion 2 by the predetermined distance while monitoring the water level W10 of the water in the supply passage 8 based on the detection signal of the water level sensor 87.
Accordingly, at the time of the power generation of the fuel cell system, the timing to supply the fuel to the reforming portion 3 and the timing to supply the water to the evaporating portion 2 appropriately conform to each other. Thus, the timing to supply the water to the evaporating portion 2 after the ignition of the combusting portion 105 is restrained from being delayed. As a result, a possibility of coking (i.e., carbonization of fuel) at the reforming portion 3 is restrained, which may decrease the deterioration of the reforming catalyst. Alternatively, after the ignition of the combusting portion 105, the timing to supply the water to the evaporating portion 2 is restrained from being too late, which may decrease a possibility of the excessive water leakage at the reforming portion 3.
In addition, according to the first to ninth embodiments, the control portion 100 performs the process to return the water in the supply passage 8 to the tank 4 by instructing the pump 80 to operate in the reverse mode at the start of the water level set process.
When the water remaining in the supply passage 8 is returned to the tank 4 as mentioned above, grit or dust, for example, is accumulated on a bottom portion of the tank 4. Thus, the grit or dust is restrained from being supplied to the reforming portion 3 via the evaporating portion 2, which further protects the reforming catalyst of the reforming portion 3, for example. Further, in a case where the water is maintained in the supply passage 8 for a long time period, quality of the water (the water W1) in the supply passage 8 may fluctuate. However, according to the aforementioned embodiments, the water is returned to the tank 4 so as to be diluted by the water in the tank 4.
Further, according to the sixth embodiment, at the start of the power generation of the fuel cell 1, the control portion 100 allows the ignition of the combusting portion 105 without performing the water level set process before the elapse of the first predetermined time t11 from the time when the fuel cell system stops the power generation (i.e., the stop time t10), and the control portion 100 performs the water level set process and then allows the ignition of the combusting portion 105 after the elapse of the first predetermined time t11 from the stop time t10.
Before the elapse of the first predetermined time t11, because the decrease of the water level W10 of the water W1 in the supply passage 8 is small, the control portion 100 allows the ignition of the combusting portion 105 without performing the water level set process. At this time, because the water level set process is not performed, the power generation is immediately performed after the command to start the power generation of the fuel cell system is output. On the other hand, after the elapse of the first predetermined time t11 from the stop time t10 of the operation of the fuel cell system, the decrease of the water level W10 of the water W1 is large and is not negligible. The control portion 100 desirably recognizes the water level W10 of the water W1 highly accurately. Thus, after the elapse of the first predetermined time t11 from the stop time t10, the control portion 100 performs the water level set process so that the ignition of the combusting portion 105 is allowed after the water level W10 of the water W1 in the supply passage 8 is specified to the predetermined position.
Furthermore, according to the seventh embodiment, the fuel cell system further includes the reference temperature sensor 33 detecting the reference temperature of the reforming portion 3. At the start of the power generation of the fuel cell 1, the control portion 100 allows the ignition of the combusting portion 105 without performing the water level set process in a case where the temperature detected by the reference temperature sensor 33 is equal to or greater than the threshold temperature T11, and the control portion 100 performs the water level set process and then allows the ignition of the combusting portion 105 in a case where the temperature detected by the reference temperature sensor 33 is smaller than the threshold temperature T11.
In a case where the detection temperature Tx at the reforming portion 3 detected by the reference temperature sensor 33 is equal to or greater than the threshold temperature T11 at the start of the power generation of the fuel cell, it is considered that the elapse of time from the stop of the fuel cell system is short and therefore the decrease of the water level W10 of the water W1 in the supply passage 8 is small. Thus, the control portion 100 allows the ignition of the combusting portion 105 without performing the water level set process. On the other hand, when the detection temperature Tx at the reforming portion 3 detected by the reference temperature sensor 33 is smaller than the threshold value T11, the elapse of time from the stop of the fuel cell system is long and therefore the decrease of the water level W10 of the water W1 is large. Thus, the control portion 100 performs the water level set process so as to specify the water level W10 of the water W1 to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 and thereafter allows the ignition of the combusting portion 105.
Furthermore, according to the eighth embodiment, the control portion 100 performs the deceleration process decelerating the water supply speed of the pump 80 while the water level set process is being performed.
Accordingly, the water level W10 of the water W1 is easily specified to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 in the supply passage 8.
Furthermore, according to the ninth embodiment, the control portion 100 performs the abort process to temporarily stop the water supply performed by the pump 80 and then to resume the water supply while the water level set process is being performed.
Accordingly, even when an air foam is included in the supply passage 8, the temporary stop of the water supply to the supply passage 8 and the restart thereof may expect the air foam to float at an upper side of the water surface of the supply passage 8. In this case, while avoiding an influence of the air foam, the water level W10 of the water W1 is highly accurately specified to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 in the supply passage 8.
Furthermore, according to the first to ninth embodiments, the predetermined distance corresponds to a distance from the inlet port 2i of the evaporating portion 2 to a point on the supply passage 8, and the predetermined distance is defined to be in a range from 0.01 to 15 in a state where the entire length of the supply passage 8 from the inlet port 2i of the evaporating portion 2 to the outlet port 4p of the tank 4 is defined to be 100.
Furthermore, according to the first to ninth embodiments, the control portion 100 performs the water level set process before the combusting portion 105 is ignited.
According to the first to ninth embodiments, a method of controlling the fuel cell system, the fuel cell system including the fuel cell 1 including the anode 10 and the cathode 11 and generating the electric power in a state where the anode fluid is supplied to the anode 10 while the cathode fluid is supplied to the cathode 11, the combusting portion 105 starting the combustion by the ignition, the evaporating portion 2 including the inlet port 2i and generating the water vapor by evaporating the water by the heat of the combusting portion 105, the reforming portion 3 forming the anode fluid by reforming the fuel by using the heat of the combusting portion 105 and the water vapor generated at the evaporating portion 2, the tank 4 including the outlet port 4p and storing the water supplied to the evaporating portion 2, the supply passage 8 connecting the outlet port 4p of the tank 4 and the inlet port 2i of the evaporating portion 2 and allowing the supply of the water to the evaporating portion 2 from the tank 4 via the inlet port 2i of the evaporating portion 2, the water level sensor 87 arranged at the supply passage 8 and detecting the water level W10 of the water positioned away from the inlet port 2i of the evaporating portion 2 by the predetermined distance, the pump 80 provided at the supply passage 8 and driven to transmit the water in the tank 4 to the evaporating portion 2 to generate the water vapor, and the control portion 100 controlling the pump 80. The method includes the first step to supply the water in the tank 4 to the supply passage 8 by instructing the pump 80 to operate by the control portion 100 in a state where the water accommodating void is formed at the supply passage 8 at the start of the power generation of the fuel cell 1 and the second step to perform the water level set process by controlling the operation of the pump 80 so that the water level W10 of the water W1 in the supply passage 8 is specified at the position away from the inlet port 2i of the evaporating portion 2 by the predetermined distance while monitoring the water level W10 of the water w1 in the supply passage 8 based on the detection signal of the water level sensor 87.
Accordingly, at the time of the power generation of the fuel cell system, the timing to supply the fuel to the reforming portion 3 and the timing to supply the water to the evaporating portion 2 appropriately conform to each other. Thus, the timing to supply the water to the evaporating portion 2 after the ignition of the combusting portion 105 is restrained from being delayed. As a result, a possibility of coking (i.e., carbonization of fuel) at the reforming portion 3 is restrained, which may decrease the deterioration of the reforming catalyst. Alternatively, after the ignition of the combusting portion 105, the timing to supply the water to the evaporating portion 2 is restrained from being too late, which may decrease a possibility of the excessive water leakage at the reforming portion 3.
Further, according to the first to ninth embodiments, the method of controlling the fuel cell system further includes the third step to return the water in the supply passage 8 to the tank 4 by the pump 80 to operate in the reverse mode at the start of the water level set process.
When the water remaining in the supply passage 8 is returned to the tank 4 as mentioned above, grit or dust, for example, is accumulated on a bottom portion of the tank 4. Thus, the grit or dust is restrained from being supplied to the reforming portion 3 via the evaporating portion 2, which further protects the reforming catalyst of the reforming portion 3, for example. Further, in a case where the water is maintained in the supply passage 8 for a long time period, quality of the water (the water W1) in the supply passage 8 may fluctuate. However, according to the aforementioned embodiments, the water is returned to the tank 4 so as to be diluted by the water in the tank 4.
Furthermore, according to the sixth embodiment, the method of controlling the fuel cell system further includes the fourth step to allow the ignition of the combusting portion 105 without performing the water level set process before the elapse of the first predetermined time t11 from the time when the fuel cell system stops the power generation (i.e., the stop time t10), and the fifth step to perform the water level set process and then allow the ignition of the combusting portion 105 after the elapse of the first predetermined time t11 from the stop time t10 at the start of the power generation of the fuel cell 1.
Before the elapse of the first predetermined time t11, because the decrease of the water level W10 of the water W1 in the supply passage 8 is small, the control portion 100 allows the ignition of the combusting portion 105 without performing the water level set process. At this time, because the water level set process is not performed, the power generation is immediately performed after the command to start the power generation of the fuel cell system is output. On the other hand, after the elapse of the first predetermined time t11 from the stop time t10 of the operation of the fuel cell system, the decrease of the water level W10 of the water W1 is large and is not negligible. The control portion 100 desirably recognizes the water level W10 of the water W1 highly accurately. Thus, after the elapse of the first predetermined time t11 from the stop time t10, the control portion 100 performs the water level set process so that the ignition of the combusting portion 105 is allowed after the water level W10 of the water W1 in the supply passage 8 is specified to the predetermined position.
According to the seventh embodiment, the method of controlling the fuel cell system further includes the sixth step to allow the ignition of the combusting portion 105 without performing the water level set process in a case where the temperature Tx detected by the reference temperature sensor 33 detecting the reference temperature of the reforming portion 3 is equal to or greater than the threshold temperature T11, and the seventh step to perform the water level set process and then allow the ignition of the combusting portion 105 in a case where the temperature Tx detected by the reference temperature sensor 33 is smaller than the threshold temperature T11 at the start of the power generation of the fuel cell 1.
In a case where the detection temperature Tx at the reforming portion 3 detected by the reference temperature sensor 33 is equal to or greater than the threshold temperature T11 at the start of the power generation of the fuel cell, it is considered that the elapse of time from the stop of the fuel cell system is short and therefore the decrease of the water level W10 of the water W1 in the supply passage 8 is small. Thus, the control portion 100 allows the ignition of the combusting portion 105 without performing the water level set process. On the other hand, when the detection temperature Tx at the reforming portion 3 detected by the reference temperature sensor 33 is smaller than the threshold value T11, the elapse of time from the stop of the fuel cell system is long and therefore the decrease of the water level W10 of the water W1 is large. Thus, the control portion 100 performs the water level set process so as to specify the water level W10 of the water W1 to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 and thereafter allows the ignition of the combusting portion 105.
Furthermore, according to the eighth embodiment, the method of controlling the fuel cell system further includes the eighth step to perform the deceleration process decelerating the water supply speed of the pump 80 while the water level set process is being performed.
Accordingly, the water level W10 of the water W1 is easily specified to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 in the supply passage 8.
Furthermore, according to the ninth embodiment, the method of controlling the fuel cell system further includes the ninth step to perform the abort process temporarily stopping the water supply performed by the pump 80 and then resuming the water supply while the water level set process is being performed.
Accordingly, even when an air foam is included in the supply passage 8, the temporary stop of the water supply to the supply passage 8 and the restart thereof may expect the air foam to float at an upper side of the water surface of the supply passage 8. In this case, while avoiding an influence of the air foam, the water level W10 of the water W1 is highly accurately specified to the predetermined position in the vicinity of the inlet port 2i of the evaporating portion 2 in the supply passage 8.
Furthermore, according to the first to ninth embodiments, the second step includes performing the water level set process before the combusting portion 105 is ignited.
The principles, preferred embodiment and mode of operation of the present invention have been described in the foregoing specification. However, the invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. Further, the embodiments described herein are to be regarded as illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such variations, changes and equivalents which fall within the spirit and scope of the present invention as defined in the claims, be embraced thereby.
Number | Date | Country | Kind |
---|---|---|---|
2010-282961 | Dec 2010 | JP | national |