The invention relates to a polymer electrolyte membrane (PEM) fuel cell with a new type of design of the edge region, and to a method for operating a fuel cell and to a fuel, cell storage battery.
A design of an edge region of a PEM fuel cell in which the edge seal is made by a frame element which presses the respectively adjacent collector plate onto the top and bottom of the membrane in such a way that the three parts are connected to one another in a mechanically secure, gastight and electronically insulating manner, is known from DE-C 44 42 285 (see
It is an object of the present invention to provide a PEM fuel cell structure with improved long-term performance.
This object is achieved by a PEM fuel cell as claimed in claim 1, by the method for its production as claimed in claim 3 and by the provision of the fuel cell storage battery as claimed in claim 4. Further configurations of the invention are given in the description, the figures and the explanations thereof.
The invention relates to a PEM fuel cell which comprises at least two terminal plates which clamp in a membrane which is covered on both sides, apart from the outermost edge, by an electrode layer, the covering of the membrane with at least one electrode layer projecting into the structural edge region of the fuel cell. This enlargement of at least one electrode layer not only means that the membrane, at least on one side, is no longer directly exposed to the process gas, but also even leads to a small reservoir of water being formed at the boundary between electrode-coated and uncoated membrane in the edge region, which water reservoir continuously wets the membrane.
The invention also relates to a method for operating a PEM fuel cell, in which the formation of product water in the structural edge region of the fuel cell is utilized to wet the membrane.
Finally, the invention relates to a PEM fuel cell storage battery, comprising at least two PEM fuel cells.
In this context, the term terminal plate is understood as meaning any type of separators and cooling and contact plate which enclose the gas space of a fuel cell on the side which lies opposite the membrane.
The “structural edge region” of the fuel cell is understood as meaning that region of the cell which lies outside the active cell areas and in which, therefore, there is no regular supply and removal of process gases and reaction products.
The electrode layer is a gas-permeable layer and preferably comprises an active catalyst layer and a support, such as for example a carbon paper.
The membrane is preferably a proton-conducting electrolyte film which in the operating state has a water content of approx. 20-40% by weight.
In the edge region, seals are preferably arranged between the terminal plates and the membrane.
According to one configuration of the invention, the frame element is made from metal and an electrically insulating layer is additionally present in the edge region, allowing series connection when the individual cells are stacked without there being any risk of a short circuit.
One configuration of the invention is explained below with reference to two figures, in which:
The cross section through the fuel cell 1 selected in
In operation, a process gas, for example the fuel, flows through the distribution ducts 13 into one of the two reaction spaces 11/12, for example the anode chamber 11, along the active cell area where the reaction of oxidant and fuel to form water and current takes place. The product water is regularly removed along the active cell area. Hitherto, the active cell area has been the only point in a fuel cell at which product water is formed. According to the invention, reaction now also takes place, to a slight extent, in the structural edge region of the cell, where the electrode layers have according to the invention been extended along the membrane. The process gases reach this area practically only by diffusion through the support of the active catalyst layer, i.e. for example through the carbon paper, since the terminal plates in the structural edge region do not have any distribution ducts 13.
As has been stated, the process gas flows in the structural edge region are small or even nonexistent and therefore the product water formed there cannot be removed. Consequently, product water 14 collects in the gap which forms and adjoins the end of the electrode layer on the membrane. As a result, a small reservoir of water 14 is formed between the seals 5 and 6 and the membrane 2. This reservoir of water offers the following advantages:
1.) The membrane surface which lies outside the active electrode surface is always surrounded by water. Membranes whose mechanical resistance is highly dependent on the water content can therefore be used with long-term stability.
2.) Any damage which may be present in the edge region of the membrane, caused, for example, by hot pressing, could hitherto, i.e. without the reservoir of water, have led to gas breakthroughs. On account of the water cushion which is now present, only gases which are dissolved in water can diffuse to the membrane. This quantity of gas is so small that there is no possibility of local overheating and further damage to the membrane, such as for example a gas breakthrough.
3.) The membrane is prevented from becoming brittle and drying out in the edge region.
The region which is circled in
The novel extension of the electrode layer into the structural edge region of the fuel cell means that a reservoir of water, which wets the membrane, is formed in that region in a gap at a location on the membrane.
Number | Date | Country | Kind |
---|---|---|---|
198 36 142 | Aug 1998 | DE | national |
298 15 330 U | Aug 1998 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTEP99/04570 | 7/1/1999 | WO | 00 | 7/24/2001 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0010215 | 2/24/2000 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5858569 | Meacher et al. | Jan 1999 | A |
5912088 | Ernst | Jun 1999 | A |
Number | Date | Country |
---|---|---|
0 499 593 | Aug 1992 | EP |
0 589 850 | Mar 1994 | EP |
0 869 568 | Oct 1998 | EP |
0 918 362 | May 1999 | EP |
04012465 | Jan 1992 | JP |
05101837 | Apr 1993 | JP |
06236765 | Aug 1994 | JP |
09199145 | Jul 1997 | JP |
10172587 | Jun 1998 | JP |
WO 9624958 | Aug 1996 | WO |
WO 9833225 | Jul 1998 | WO |