The present invention relates to conductive materials; more particularly, to such materials useful in forming high-conductivity, durable electrical contacts; and most particularly, to such materials which are not noble metals and which form passivating yet conductive surface oxides.
In devices having contact surfaces for conducting electricity between two elements equipped with such contact surfaces (referred to herein as “electrical contacts”), an electrical continuity problem is well known in the art. As used herein, “electrical contact” should be taken to mean any surface which electrical current enters or exits, or apparatus having such a surface. Examples of such an apparatus are batteries, lamps, sliding switches as in a battery-powered flashlight, electrical relays, header connectors, circuit board terminals, computer peripheral back planes, and both solid-oxide and proton exchange membrane fuel cell assemblies. Inexpensive base metals typically used to form prior art electrical contacts, for example, aluminum, zinc, copper, tin, or stainless steel, either corrode or form electrically-resistive oxide layers on the surface of the contacts because of electrochemical activity and/or atmospheric attack at these surfaces. The non-conductive oxide surface layers increase the resistance of the metallic interface and inversely decrease the conductivity. Practical conduction of a surface in any application depends, of course, on the applied voltage and amperage; but for many applications, for example, in fuel cell assemblies, a measured resistance of greater than about 0.0015 ohmcm2 (Ωcm2) is unacceptable. In the prior art, electrical contacts requiring high conductivity and long durability are known to be coated with noble metals such as gold and platinum to prevent corrosion of the electrical contact surfaces, but such coatings are so expensive as to be impractical for many ordinary applications.
One example pertains to the electric contact resistance of hydrogen/oxygen fuel cells, wherein such considerations are especially relevant. In a proton exchange membrane (PEM) fuel cell stack, individual membrane electrode assemblies (MEA) are connected in electrical series using “bipolar plates” between the MEAs. The functions of each bipolar plate include connecting the individual fuel cells, distributing fuel gas over the anode surface, distributing oxygen over the cathode surface, and conducting current from the anode of one cell to the cathode of the next. Bipolar plates are typically formed of graphite or carbon-based composites which are conductive and have low density. Graphite, however, is brittle and has relatively low strength, making it difficult to handle. In addition, it is bulky, is expensive to machine, and is relatively porous. Metals are better electrical conductors than graphite, are more compact, are relatively easy to machine, and are usually not porous. However, the PEM fuel cell environment is very corrosive for all prior art materials but the noble metals, as water vapor, oxygen, and heat coexist in a PEM fuel cell. Furthermore, during long-term operation of a PEM fuel cell, small amounts of HF and H2SO4 are known to leach out of other components, leading to either pitting corrosion or formation of a high-resistance passivating layer on the cathode side of a metal bipolar plate. In the prior art, only conductive polymer or noble metal coatings are satisfactory solutions to this problem for metal bipolar plates, and each is expensive and requires an additional manufacturing step, which increases the overall cost of a PEM fuel cell.
Another example occurs in the electrical contacts formed in standard connectors having terminals formed of non-noble metals. Typically, the point of electrical contact inside a connector is a dimpled metallic surface pressed against another metallic surface, which may be flat or contoured. After the connector is assembled, the measured resistance across the connection interface is desirably less than 10 mΩ or 0.2×10−4 mΩcm2. Unfortunately, this initial value may change over time, because the metallic surfaces can oxidize, causing the measured resistance across the metallic interface to increase.
Copper, tin, silver, palladium, and hardened gold are all commonly used connector interface materials. Hardened gold provides the most reliable and stable interconnection, but even this material will degrade to a failure level due either to diffusion of an additive (cobalt or nickel) that hardens the gold to the surface or to wear-through of the gold layer and exposure of the more reactive base metal, typically a copper alloy. In all cases, the electrical interconnection will eventually fail.
What is needed is a simple and cost-effective means for providing and maintaining electrical conductivity of electrical contact surfaces in environments which produce high-resistance passivating or corrosion layers on base metal contact surfaces.
It is a principal object of the present invention to provide improved materials for forming or surface coating electrical contacts which are simple and inexpensive to manufacture and which maintain acceptable electrical conductivity of the surface during use.
It is a further object of the invention to increase the durability and reliability of electrical contacts and of apparatus equipped with electrical contacts.
It is a further object of the invention to reduce the manufacturing cost of apparatus incorporating electrical contact surfaces.
Briefly described, electrical contacts and/or contact surfaces are formed of metal alloys which when oxidized form highly conductive and passivating oxide layers, thus maintaining electrical conductivity and continuity. In accordance with the invention, alloy composition systems such as, but not limited to, Ti—Nb, Ti—Ta, La—Sr—Cr, La—Sr—Co, Cu—Ti, Cu—Fe, Cu—Mn, and Sn—In form surface oxide passivation layers which are highly conductive. The conductive layers may be formed in situ after assembly of the electrical contacts or may be provided in an oxidative step during manufacture. The electrical contacts may be formed entirely of one or more of such alloys, or may be formed of an inexpensive base metal having the alloy coated thereupon, or the alloy may form a homogeneous mixture throughout the electrical contact, the alloy portion exposed at the contact surface forming a conductive oxide layer.
The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
a and 2b are schematic cross-sectional views of a metal alloy in accordance with the invention without and with, respectively, conductive metal oxide surface layers formed either naturally or as induced by a processing step;
Referring to
Referring to
Materials exhibiting passivating conductive oxide layers, suitable for forming contact elements 12a, 12b and surface oxide layers 14a, 14b in accordance with the invention, are selected from the metal alloy group consisting of chemical elements having the following elemental symbols:
Y—Ba—Cu
La—Sr—Co
La—Sr—Cr
La—Sr—V
La—Ca—Mn
La—Sr—Mn
La—Nd—Ni
Ti—Ta
Ti—Nb
Ti—V
Ti—W
Ti—Mo
Ti—Zr—Ta
Ti—Zr—Nb
Cr—Ta
Cr—Nb
Cr—Ti
Cr—Zr
Sr—V
Ni—Li
Cu—Ti
Cu—Fe
Cu—Mn
Cu—Al
Cu—Si
Sn—Sb
Sn—In
To further illustrate the manufacture, composition, and benefit of alloys and oxides in accordance with the invention, the following discussion deals specifically with some alloys of the present invention having titanium (Ti) as the main metal component.
In nature, pure Ti forms a passivating TiO2 layer when exposed to atmospheric oxygen which prevents further corrosion of the plate. Unfortunately, this layer acts as an electrical insulator and therefore limits current flow; however, it is known in the ceramics art that TiO2 can be made conductive by doping with approximately 1 atom percent (at. %) tantalum (Ta) or niobium (Nb).
In the Ti example, for doping to be successful in producing metal alloys that can form oxides which are both passivating and conductive, it is believed that several conditions should be met:
1) To achieve n-type doping the doping ion should be in a higher valence state than the main metal ion, e.g, Ti+4 may be doped by Nb+5 or Ta+5, as shown in alloy surface layer 15 in
2) The main metal cations in the oxide lattice (e.g., Ti+4) and the lower valence cations (e.g., Ti+3) should have similar ionic radii, preferably within about 20%; otherwise, the smaller ions will tend to segregate as intersticial defects, which will ultimately interfere with the hopping conduction. Likewise, it is important that the doping ion truly substitute for the main ion and not segregate as an interstitial defect; therefore, the ionic radii of Ti+4 and the dopant ion should be similar and preferably within about 20%, as shown below in Table I for Ti, Nb, and Ta.
3) The doping element should form a solid solution with the main element, rather than a compound, so that the doping atoms do not phase separate from the main metal atoms but remain uniformly distributed throughout the alloy. Phase diagrams of Ti—Nb and Ti—Ta indicate that alloys of Ti with about 0 to about 100 at. % of either Nb or Ta, preferably about 1 to 10 at. %, form such solid solutions. A schematic phase diagram typical for alloys of metals A and B in accordance with the invention is shown as
4) The conductive passivating oxides to be formed should also form solid solutions without phase separation, which would result in formation of separate, highly non-conductive regions dominated by the properties of the single component oxides, which regions would be highly non-conductive. Phase diagrams, like the schematic metal oxide phase diagram shown in
Alloys of either Nb and Ta meet all four of the above criteria when the dopant is added to Ti in the dopant range of about 1 at. % to about 50 at. %, preferably between about 1 and about 10 at. %.
In order to form a conductive passivating surface layer on an electrode formed of a Ti alloy, the surface atoms must be oxidized, preferably by controlled electro-oxidation. A currently preferred means for providing such oxidation is via cyclic voltammetry (CV), although obviously other oxidation methods as may occur to one of skill in the art are fully comprehended within the scope of the present invention. Since the composition of corrosive fluid which accumulates in a PEM fuel cell assembly is known, oxidation of an alloy in such a fluid can produce an oxide surface film which is both conductive and passivating to further oxidation by the fluid, thereby providing long-term service in such a fuel cell assembly.
One satisfactory CV oxidation method includes the steps of:
a) forming 1073 ml of an aqueous electrolyte solution containing 2 ml 490 ppm HF, 0.56 ml 980 ppm H2SO4, and 7 g Na2SO4 in deionized water;
b) mounting in the solution a working electrode formed of the alloy to be oxidized, a graphite counter-electrode, and a Calomel reference electrode;
c) heating the electrolyte solution to 80° C. for 15 minutes while bubbling oxygen through the solution and monitoring the open circuit potential (OCV) between the working electrode and the reference electrode; and
d) ramping the potential from the OCP up to 1 volt and then down to 0, preferably at a scan rate of about 5 mV/sec.
Additional ramping cycles may be imposed; however, as shown in
Working load can affect the stability and conductivity of electrical connections.
While the invention has been described by reference to various specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.
The present application is a continuation of U.S. patent application Ser. No. 10/674,245, filed Sep. 29, 2003 now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 10/224,871, filed Aug. 21, 2002 now U.S. Pat. No. 7,037,617.
Number | Name | Date | Kind |
---|---|---|---|
3235476 | Boyd et al. | Feb 1966 | A |
3671226 | Komata et al. | Jun 1972 | A |
4468416 | Asano et al. | Aug 1984 | A |
5441670 | Shimamune et al. | Aug 1995 | A |
5942349 | Badwal et al. | Aug 1999 | A |
6280868 | Badwal et al. | Aug 2001 | B1 |
6321145 | Rajashekara | Nov 2001 | B1 |
6346182 | Bradley | Feb 2002 | B1 |
6423896 | Keegan | Jul 2002 | B1 |
6455185 | Bircann et al. | Sep 2002 | B2 |
6485852 | Miller et al. | Nov 2002 | B1 |
6509113 | Keegan | Jan 2003 | B2 |
6551734 | Simpkins et al. | Apr 2003 | B1 |
6562496 | Faville et al. | May 2003 | B2 |
6608463 | Kelly et al. | Aug 2003 | B1 |
6613468 | Simpkins et al. | Sep 2003 | B2 |
6613469 | Keegan | Sep 2003 | B2 |
6620541 | Fleck et al. | Sep 2003 | B2 |
6627339 | Haltiner, Jr. | Sep 2003 | B2 |
6630264 | Haltiner, Jr. et al. | Oct 2003 | B2 |
6805989 | Seido et al. | Oct 2004 | B2 |
6843960 | Krumpelt et al. | Jan 2005 | B2 |
6963117 | Yang et al. | Nov 2005 | B2 |
7037617 | Eddy et al. | May 2006 | B2 |
20040058205 | Mantese et al. | Mar 2004 | A1 |
20040247978 | Shimamune | Dec 2004 | A1 |
20050189041 | Mantese et al. | Sep 2005 | A1 |
20060222927 | Eddy et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
60224812 | Nov 1985 | JP |
07073871 | Mar 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20070254194 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10674245 | Sep 2003 | US |
Child | 11825037 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10224871 | Aug 2002 | US |
Child | 10674245 | US |