1. Field of the Invention
This invention relates generally to fuel cells, and more particularly, to the manufacture of such fuel cells.
2. Background Information
Fuel cells are devices in which electrochemical reactions are used to generate electricity. A variety of materials may be suited for use as a fuel depending upon the nature of the fuel cell. Organic materials, such as methanol or natural gas, are attractive fuel choices due to their high specific energy.
Fuel cell systems may be divided into “reformer-based” systems (i.e., those in which the fuel is processed in some fashion to extract hydrogen from the fuel before it is introduced into the fuel cell) or “direct oxidation” systems in which the fuel is fed directly into the cell without the need for separate internal or external processing. Most is currently available fuel cells are reformer-based fuel cell systems. However, because fuel processing is complex, and requires expensive components, which occupy comparatively significant volume, the use of reformer based systems is presently limited to comparatively large, high power applications.
Direct oxidation fuel cell systems may be better suited for a number of applications in smaller mobile devices (e.g., mobile phones, handheld and laptop computers), as well as in some larger scale applications. In fuel cells of interest here, a carbonaceous fuel (including, but not limited to, liquid methanol, or an aqueous methanol solution) is applied to the anode face of a membrane electrode assembly (MEA). The MEA contains a protonically conductive, but electronically non-conductive membrane (PCM). Typically, a catalyst, which enables direct oxidation of the fuel on the anode aspect of the PCM, is disposed on the surface of the PCM (or is otherwise present in the anode chamber of the fuel cell). In the fuel oxidation process at the anode, the products are protons, electrons and carbon dioxide. Protons (from hydrogen in the fuel and water molecules involved in the anodic reaction) are separated from the electrons. The protons migrate through the PCM, which is impermeable to the electrons. The electrons travel through an external circuit, which includes the load, and are united with the protons and oxygen molecules in the cathodic reaction, thus providing electrical power from the fuel cell.
One example of a direct oxidation fuel cell system is a direct methanol fuel cell system or DMFC system. In a DMFC system, a mixture comprised predominantly of methanol and water is used as fuel (the “fuel mixture”), and oxygen, preferably from ambient air, is used as the oxidizing agent. The fundamental reactions are the anodic oxidation of the methanol and water in the fuel mixture into CO2, protons, and electrons; and the cathodic combination of protons, electrons and oxygen into water. The overall reaction may be limited by the failure of either of these reactions to proceed at an acceptable rate (more specifically, slow oxidation of the fuel mixture will limit the cathodic generation of water, and vice versa).
Direct methanol fuel cells are being developed towards commercial production for use in portable electronic devices. Thus, the DMFC system, including the fuel cell and the other components should be fabricated using materials and processes that are not only compatible with appropriate form factors, but which are also cost effective. Furthermore, the manufacturing process associated with a given system should not be prohibitive in terms of associated labor or manufacturing cost or difficulty.
Typical DMFC systems include a fuel source, fluid and effluent management and air management systems, and a direct oxidation fuel cell (“fuel cell”). The fuel cell typically consists of a housing, hardware for current collection and fuel and air distribution, and a membrane electrode assembly (“MEA”) disposed within the housing.
A typical MEA includes a centrally disposed, protonically conductive, electronically non-conductive membrane (“PCM”). One example of a commercially available PCM is NAFION® a registered trademark of E.I. Dupont de Nemours and Company, a cation exchange membrane comprised of polyperflourosulfonic acid, in a variety of thicknesses and equivalent weights. The PCM is typically coated on each face with an electrocatalyst such as platinum, or platinum/ruthenium mixtures or alloy particles. On either face of the catalyst coated PCM, the electrode assembly typically includes a diffusion layer. The diffusion layer on the anode side is employed to evenly distribute the liquid fuel mixture across the anode face of the PCM, while allowing the gaseous product of the reaction, typically carbon dioxide, to move away from the anode face of the PCM. In the case of the cathode side, a diffusion layer is used to achieve a fast supply and even distribution of gaseous oxygen across the cathode face of the PCM, while minimizing or eliminating the collection of liquid, typically water, on the cathode aspect of the PCM. Each of the anode and cathode diffusion layers also assist in the collection and conduction of electric current from the catalyzed PCM.
As noted, the MEA is typically comprised of a centrally disposed PCM to which an appropriate electrocatalyst has been applied or otherwise is in intimate contact with the PCM. Typically a diffusion layer is adjacent to each of the anode and cathode diffusion layer to allow reactants to reach the active catalyst sites, and allowing product of the reaction to be transported away from each of the anode and cathode aspects of the PCM. Gaskets are often used to maintain the catalytic layers and the diffusion layers in place. Current collectors are used within the assembly to provide an electron path to the load. These current collectors are made of a conductive material that is preferably non-reactive with methanol, and must allow for the transport of gas and liquid. Typically this can be achieved by using an open metal structure, which can be either coated or plated to enhance conductivity or to further protect the current collectors from adverse effects of the methanol and fuel cell, such as oxidation.
Generally, the entire MEA is placed into a frame structure including current collectors that both compresses the MEA and provides an electron path. Although this can provide some dimensional stability, the greater the compression that is required, the more mechanical components (i.e., screws, etc.) must be employed to assure adequate pressure. Those skilled in the art will recognize that sealing and application of significant pressure can be accomplished in various ways, typically utilizing mechanical fasteners such as screws, nuts, welds, pins, clips, and the like.
One example of a process for manufacturing a fuel cell and an associated fuel cell array is described in commonly-owned U.S. patent application Ser. No.: 10/650,424, filed on Aug. 28, 2003 by Fannon et al. for a METHOD OF MANUFACTURING A FUEL CELL ARRAY AND A RELATED ARRAY, which is presently incorporated herein by reference. This process includes compressing the fuel cell components and creating a frame about the components by injecting a plastic molding around the fuel cell. Once the injected plastic molded frame is set, the fuel cell frame holds the components of the cell in compression without the need for screws or nuts.
In more detail, prior to the injection molding process of a fuel cell, compression is applied to the assembly by applying a predetermined surface pressure (design pressure) with compression plates. This pre-molding compression is applied in order to reduce the contact resistance of the current collectors. After the plastic is injected and the assembly becomes an integrated structure, the surface pressure is released. Since the current collector is only held by the plastic frame at the perimeter, it can bend outward to a three-dimensional shape that is convex about the two in-plane axes, with the maximum deflection occurring at the center. As a consequence, a part or all of the applied compression at the center region is relaxed which results in increased contact resistance of the current collector. A small additional relaxation may also occur at the boundaries caused by the stretching (creeping) of the plastic frame. The maximum deflection of the current collector is the design driver and depends on the current collector geometry and flexural rigidity.
One solution to these problems is to add a “compliance layer” as described in commonly-owned U.S. patent application Ser. No.: 10/792,024, filed on Mar. 3, 2004 by Minas et al. for a FUEL CELL WITH COMPLIANCE LAYER, which is presently incorporated herein by reference. The compliance layer is inserted between the MEA and the current collectors, and is used to reduce the compressive stiffness of the fuel cell and maintain acceptable contact resistance between the MEA and the current collectors. In essence, the compliance layer acts to maintain a pressure within the manufactured fuel cell, and fills any gaps created by the outward bending of the current collectors. Use of the compliance layer, however, adds another manufacturing material to the layers of the fuel cell assembly, and in some situations, may not adequately prevent the assembly from bending outwards.
There remains a need, therefore, for a process of manufacturing and assembling a fuel cell or a fuel cell array, which results in maintaining a desired contact resistance of the current collector and the MEA, while maintaining a uniformity of fuel cell assembly dimensions and internal compression.
It is thus an object of the present invention to provide a process of manufacturing and assembling a fuel cell or a fuel cell array, which results in maintaining a desired contact resistance of the current collector, with a substantial uniformity of fuel cell assembly dimensions and internal compression. It is yet a further object of the invention to provide a fuel cell that has been produced by such processes.
In brief summary, the present invention is a pre-shaped current collector and conforming compression plate, and a process for manufacturing a fuel cell and an associated fuel cell array that includes the novel current collectors. The pre-compression shape is designed in such a manner that post-compression relaxation causes the collector to relax to the desired position. In other words, the pre-compression shape is designed to anticipate and counteract the post-compression relaxation. Specifically, during manufacture, variable in-plane compression is applied to the fuel cell, and a frame is molded around the edges of the fuel cell to maintain the compression. After the frame is molded and the pressure is released, the pre-shaped current collectors deflect away from the membrane electrode assembly (MEA) to substantially the same degree as in presently known fuel cells. Although the displacement from this deflection is substantially the same, the overall compression relaxation is much lower because the pre-shaped current collectors are bending back to a parallel plane relative to the MEA, as opposed to flexing away from it in a convex manner. The pre-shaped current collectors may also increase creep tolerance of the fuel cell by preserving a pressure and connectivity of the fuel cell in the event the frame stretches after manufacture.
In accordance with an aspect of the present invention, the use of the pre-shaped current collectors may allow for a thinner current collector to be used, since the design driver of the novel invention is-the maximum stress, and not the maximum deflection. As a result, the pre-shaped current collector will maintain better contact with the MEA, thus minimizing contact resistance between the components.
In a preferred embodiment of the present invention, a curved compression plate may be used to compress the pre-shaped current collectors. The curve can be either an integral part of the plate, or a removable feature.
In another embodiment of the present invention, a substantially flat compression plate may be used to compress the pre-shaped current collectors. The pre-shaped current collectors may maintain their original curvature during compression, alleviating the need for a curved compression plate.
The invention description below refers to the accompanying drawings, of which:
By way of background,
Referring now to
where kA is the stiffness of the anode current collector 106, kMEA is the stiffness of the MEA 102, and kC is the stiffness of the cathode current collector 104. For simplification, because the stiffness kMEA of the MEA 102 is several orders of magnitude smaller than the stiffness kA and kC of the current collectors 104 and 106, the total compressive stiffness k can be approximated by:
The overall deflection δpmc (distance compressed) of the fuel cell 100 during this pre-molding compression phase is calculated as:
where P is the surface pressure applied to the fuel cell 100, and A is the surface area of the assembly 100.
Referring now to
After the mold material is injected and the assembly 100 becomes an integrated structure, the surface pressure holding the pre-molding compression is then released. Since the current collectors 104 and 106 are held by the frame 110 at the perimeter, they may bend outwards to a three-dimensional shape that is convex about the two in-plane axes, with the maximum deflection occurring at the approximate center of the current collector, as shown in
In accordance with the present invention, the deflection is predicted and the current collectors are designed and pre-shaped accordingly. As will be understood by those skilled in the art, the out of plane deflection, w, at a given planar location (xy) is governed by the biharmonic equation shown below where P is again the applied pressure and D is the flexural rigidity of the current collectors 104 and 106:
In this equation, h is the thickness of the current collectors 104 and 106, and E and v are the Elastic modulus and Poisson's ratio of the current collector material, respectively. Without limitation of the invention, those skilled in the art will recognize that different values may be used for the current collectors 104 and 106 where additional components are required, or where it is otherwise necessary or desirable to use current collectors with different material characteristics. For the purpose of simplicity, those equations have not been shown here.
The maximum compression reduction can be calculated by the following equation:
For a current collector of the same material and geometry, the compression reduction is directly proportional to the compressive stiffness k of the assembly.
After a frame is molded around the fuel cell assembly and compression is released, the surface pressure toward the approximate center of the MEA is relaxed. This is due to the fact that the frame only supports the outer edges of the assembly.
With reference now to
As can be seen in
In
For reference,
In this case, the maximum deflection is no longer the design driver, since it is practically eliminated. Instead, the maximum stress (ac) in the current collector material becomes the design driver, and depends on the current collector flexural rigidity and yield strength. The strains at location z (distance from the neutral axis of the plate) can be calculated by the following equations:
Then using Hooke's equations one can calculate the stress (σ) as:
Because the design driver is the flexural rigidity and yield strength of the current collectors, it is possible to use a thinner current collector in combination with a material that exhibits higher qualities in these aspects. An example of such a material is age-hardenable stainless steel. Using thinner pre-shaped current collectors 304 and 306 results in an overall thinner fuel cell assembly 300, as well as one which is easier to assemble as less compression needs to be applied by the frame. In addition, the invention results in a less expensive current collector, as they can be stamped or etched more economically.
Use of the pre-shaped current collectors 304 and 306 also provides creep tolerance in the fuel cell assembly 300 with an injected molded frame 310. In the case where the frame 310 creeps and further reduces compression, the current collectors 304 and 306 would remain in substantial electrical contact with the MEA 302, because of the curved, spring-like nature of the current collectors.
Again, after a frame is molded around the fuel cell assembly with the pre-shaped current collectors and compression is released, the surface pressure toward the approximate center of the MEA is relaxed.
Referring now to
It should be understood that the present invention is not limited to use with a single fuel cell, but can be used with assemblies comprised of multiple cells, such an assembly of fuel cells arranged in an array. It should also be understood that the present invention is not limited to the number of pre-shaped current collectors used, where it is possible to only have one of the two current collectors be pre-shaped in accordance with the present invention. It is also possible to use only one curved compression plate. It should also be understood that the present invention is not limited to use with a fuel cell assembled using a molded frame, but could be used in other fuel cells that are held together with other methods, such as screws or nuts. Such variations are within the scope of the present invention.
It should be understood that the present invention provides a number of advantages in the fabrication of a fuel cell. The novel pre-shaped current collectors maintain a desired contact resistance of the current collectors and the MEA. This is also the case in the event the frame surrounding the fuel cell stretches or creeps, and in the event that a thinner current collector is used. A level uniformity of fuel cell assembly height and internal compression is also achieved with the use of the pre-shaped current collectors.
The foregoing description has been directed to specific embodiments of the invention. It will be apparent, however, that other variations and other modifications may be made to the described embodiments, with the attainment of some or all of the advantages of such. Therefore, it is the object of the appended claims to cover all such variations and modifications as come with in the true spirit and scope of the invention.