1. Field of the Invention
The invention relates to a fuel cell.
2. Description of the Related Art
Fuel cells that generate power through electrochemical reactions between hydrogen and oxygen have been drawing attention as an energy source. Such a fuel cell generally has a membrane-electrode assembly (hereinafter, referred to as “MEA”) in which an anode is formed on one side surface of an electrode membrane and a cathode is formed on the other side surface thereof. In this fuel cell, a channel-forming member that forms a fuel gas supply channel is disposed on the anode (see Japanese Patent Application Publication No. 2004-6104 (JP-A-2004-6104)). Incidentally, the channel-forming member often used is an electroconductive porous body or the like. Besides, the anode or the cathode sometimes has a gas diffusion layer as well as a catalyst layer.
Generally, the oxidizing gas used in fuel cells is air, or a mixture gas of air and oxygen, etc. In such a case, nitrogen or the like in the air may sometimes leak from a cathode side to an anode side. In association with this, there is a possibility that the nitrogen or the like leaking from the cathode side (hereinafter, also referred to as leak gas) may reside in a fuel gas supply channel on the anode side. If such a leak gas thus resides in the fuel gas supply channel, there is a possibility that the fuel gas may not be supplied in a dispersed fashion to the anode (anode surface) and therefore lack of supply of the fuel gas may locally occur in some portions of the anode and the power generation in those portions may be restrained. In consequence, there is a possibility that the power generation efficiency of the fuel cell as a whole may decline.
In particular, the fuel cells of the anode dead-end operation type (that operates in, e.g., a mode in which substantially the entire amount of the fuel gas supplied to the fuel gas supply channel is consumed on the anode to generate power) are likely to experience the aforementioned problem. Besides, the aforementioned problem is not limited to the case where the leak gas resides, but can also occur in the case where a substance other than hydrogen that has mixed in the fuel gas or the like resides.
The invention provides a technology for fuel cells that is capable of supplying the fuel gas to the anode in a dispersed fashion.
The invention has been accomplished in order to solve at least a portion of the aforementioned task, and can be realized in the following forms or applications.
An aspect of the invention relates to a fuel cell that includes: an anode-forming layer that is provided on an outer side of one surface of an electrolyte membrane and that includes an anode; a cathode provided on an outer side of another surface of the electrolyte membrane; a partition wall portion that is formed in the anode-forming layer in a thickness direction thereof, and that divides at least a surface of the anode-forming layer remote from the electrolyte membrane into a plurality of blocks, and that restrains movement of a gas between adjacent ones of the blocks; and a gas introduction portion which has a gas passage portion that allows the fuel gas to pass through, and which introduces the fuel gas, via the gas passage portion, into the blocks divided by the partition wall portion.
According to the fuel cell constructed as described above, the fuel gas can be supplied to the anode in the fuel cell in a dispersed fashion.
In the fuel cell of the foregoing aspect, the divided blocks may be arranged so that one block corresponds to one gas passage portion.
This construction makes it possible to restrain an impurity, such as a leak gas or the like, from locally residing in a block.
In the fuel cell of the foregoing aspect, the divided blocks may be formed in a honeycomb fashion. Incidentally, the blocks may be fOrmed to have a honeycomb fashion when viewed from the thickness direction of the anode.
With this construction, the fuel gas can easily spread to the corners of each block.
The fuel cell of the foregoing aspect may further include an oxidizing gas channel-forming portion that is provided on an outer side of the cathode and that forms an oxidizing gas supply channel for supplying an oxidizing gas in a direction along a surface of the cathode. As for the divided blocks, a block that corresponds to an upstream side in a flowing direction of the oxidizing gas that flows in the oxidizing gas supply channel may have a smaller volume than a block that corresponds to a downstream side in the flowing direction.
With this construction, large amounts of the fuel gas can be supplied to portions of the anode in which the amount of generated current is large, and therefore the power generation efficiency of the fuel cell can be improved.
The fuel cell of the foregoing aspect may further include an oxidizing gas channel-forming portion that is provided on an outer side of the cathode and that forms an oxidizing gas supply channel for supplying an oxidizing gas in a direction along a surface of the cathode. As for the divided blocks, a block that corresponds to a downstream side in a flowing direction of the oxidizing gas that flows in the oxidizing gas supply channel may have a greater gas permeability than a block that corresponds to an upstream side in the flowing direction.
With this construction, the decrease in the amount of the fuel gas supplied can be restrained in a portion of the anode that corresponds to the downstream side in the flowing direction of the oxidizing gas. Accordingly, the power generation efficiency in that portion heightens, so that the power generation efficiency of the fuel cell can be improved.
In the fuel cell of the foregoing aspect, the partition wall portion may be formed so that each block has a dome shape whose top portion faces in a direction toward an outer side of the anode, that is, a direction away from a side of the anode where the electrolyte membrane is located. Incidentally, the dome shape is a concept that comprehensively includes shapes whose section gradually lessens or enlarges. Besides, the dome shape herein is not limited to a shape whose top portion is formed to be roundish.
With this construction, the fuel gas introduced into each block easily diffuses in the block along the wall surface of the partition wall portion. Therefore, the residence of an impurity, such as the leak gas or the like, in the blocks becomes less likely, and the power generation efficiency of the fuel cell can be improved.
In the fuel cell of the foregoing aspect, the partition wall portion may be formed so as to be thinner at a side of the anode-forming layer that is relatively close to the electrolyte membrane than at a side of the anode-forming layer that is relatively remote from the electrolyte membrane.
With this construction, the catalyst layer-contacting area in each block becomes larger, so that the fuel gas diffusing in each block can be supplied to the catalyst layer in a larger amount. As a result, the power generation efficiency of the fuel cell will improve.
In the fuel cell of the foregoing aspect, the anode-forming layer may include a catalyst layer provided on an outer side of one surface of the electrolyte membrane, and a gas diffusion layer provided on an outer side of the catalyst layer, and the partition wall portion may be formed at least in the gas diffusion layer.
With this construction, the fuel gas can be supplied to the catalyst layer in a dispersed fashion.
In the fuel cell of the foregoing aspect, the partition wall portion may be formed in the gas diffusion layer without contacting the catalyst layer.
This construction will prevent the partition wall portion from damaging the catalyst layer.
In the fuel cell of the foregoing aspect, the gas introduction portion may be an electroconductive sheet portion having a sheet shape and being gas-impermeable which is provided on an outer side of the anode-forming layer, and the gas passage portion may be a plurality of penetration holes that are arranged in a dispersed fashion along a sheet plane of the electroconductive sheet portion, and the fuel cell may further include a fuel gas channel-forming portion that is provided on an outer side of the electroconductive sheet portion and that forms a fuel gas supply channel for supplying the fuel gas in a direction along a plane of the electroconductive sheet portion.
This construction will restrain an impurity, such as the leak gas or the like, from entering the fuel gas supply channel from the anode-forming layer side, and will restrain an impurity, such as the leak gas or the like, from residing in the fuel gas supply channel. As a result, the fuel gas can be supplied to the anode in a dispersed fashion.
In the fuel cell of the foregoing aspect, the anode may be lower in gas permeability than the fuel gas supply channel that is formed by the fuel gas channel-forming portion.
With this construction, the diffusion of the fuel gas supplied through the penetration holes of the electroconductive sheet can be promoted in each block in the anode.
In the fuel cell of the foregoing aspect, the penetration holes provided in the electroconductive sheet portion may be inclined with respect to a thickness direction of the electroconductive sheet portion.
With this construction, the fuel gas introduced into the blocks through the penetration holes easily diffuses in the individual blocks. Therefore, the residence of the leak gas in the blocks becomes less likely, and the power generation efficiency of the fuel cell can be improved.
In the fuel cell of the foregoing aspect, the gas introduction portion may be a pipe-shape member through whose interior the fuel gas passes, and the gas passage portion may be a plurality of penetration holes that are arranged in a dispersed fashion in the pipe-shape member.
This construction will lessen the variation of the amount of the fuel gas supplied to the anode.
In the fuel cell of the foregoing aspect, the gas introduction portion may be a pipe-shape member through whose interior the fuel gas passes, and the gas passage portion of the gas introduction portion may be an opening portion that is provided in an end portion of the pipe-shape member.
This construction will lessen the variation of the amount of the fuel gas supplied to the anode.
In the fuel cell of the foregoing aspect, substantially an entire amount of the fuel gas supplied to each block may be consumed on the anode.
In the fuel cell as described above, particularly, the provision of the foregoing constructions of the fuel cell makes it possible to restrain the residence of an inert gas, such as the leak gas or the like, and supply the fuel gas to the anode in a dispersed fashion.
In the fuel cell of the foregoing aspect, an anode side of the fuel cell may have a closed structure in which the fuel gas supplied to the anode is not discharged to outside.
In the fuel cell as described above, particularly, the provision of the foregoing constructions of the fuel cell makes it possible to restrain the residence of an inert gas, such as the leak gas, and supply the fuel gas to the anode in a dispersed fashion.
The foregoing and further objects, features and advantages of the invention will become apparent from the following description of embodiments with reference to the accompanying drawings, wherein like numerals are used to represent like elements and wherein:
Hereinafter, fuel cells in accordance with the invention will be described on the basis of embodiments with reference to the drawings.
A1. Construction of Fuel Cell System 1000
Firstly, a general construction of a fuel cell system 1000 having a fuel cell 100 in accordance with a first embodiment of the invention will be described.
The high-pressure hydrogen tank 1100 stores hydrogen as a fuel gas of the fuel cell 100. The high-pressure hydrogen tank 1100 is connected by a hydrogen supply piping 1110 to a fuel gas supply manifold (described below) of the fuel cell 100. The hydrogen supply piping 1110 is provided with the hydrogen shutoff valve 1120 on an upstream side, and with the regulator 1130 on a downstream side for adjusting the pressure of hydrogen.
The air compressor 1200 supplies high-pressure air as an oxidizing gas to the fuel cell 100. The air compressor 1200 is connected by an air supply piping 1210 to an oxidizing gas supply manifold (described below) of the fuel cell 100. The air supply piping 1210 may be provided with a humidifier. The amount of the oxidizing gas not given for use in the electrochemical reaction on the cathode of the fuel cell 100 is discharged to the outside of the fuel cell 100 via a discharge piping 1220 connected to an oxidizing gas discharge manifold (described below).
The control portion 1300 is constructed as a logic circuit with a microcomputer as a central unit. Specifically, the control portion 1300 is equipped with a CPU (not shown) that executes predetermined computations and the like by following pre-set control programs, a ROM (not shown) that pre-stores control programs, control data, etc. that are needed for the CPU to execute various computation processes, a RAM (not shown) that various data needed for the CPU to perform various computation processes are temporarily written into and read from, input/output ports (not shown) that inputs/outputs various signals, etc. The control portion 1300 is connected with the hydrogen shutoff valve 1120, the air compressor 1200, etc., via signal lines, and controls these devices and the like to accomplish the power generation by the fuel cell 100.
As shown in
The seal-integrated power generation assembly 200 is constructed of a laminate member 800 and a seal member 700 as shown in
The laminate member 800, as shown in
The MEA 24 is provided with an electrolyte membrane 810, an anode 820 and a cathode 830. The electrolyte membrane 810 is, for example, an ion exchange membrane that is formed of a fluorine-based resin material or a hydrocarbon-based resin material and that has good ion conductivity in a moist state. The anode 820 is made up of a catalyst layer 820A provided on one surface of the electrolyte membrane 810, and an anode-side diffusion layer 820B provided on a side surface of the catalyst layer 820A that is remote from the electrolyte membrane 810. The cathode 830 is made up of a catalyst layer 830A provided on the other side surface of the electrolyte membrane 810, and a cathode-side diffusion layer 830B provided on a side surface of the catalyst layer 830A that is remote from the electrolyte membrane 810. The catalyst layer 820A and the catalyst layer 830A are each formed from, for example, a catalyst support body supporting a catalyst (e.g., platinum or the like), and an electrolyte. The anode-side diffusion layer 820B and the cathode-side diffusion layer 830B are each formed of a porous material that has gas diffusivity and electroconductivity; for example, they are formed by, for example, a carbon cloth obtained by weaving a carbon-fiber yarn, a carbon paper, a carbon felt, a metal porous body, etc. The MEA 24 has a rectangular shape. Incidentally, partition wall portions 825 are formed within the anode-side diffusion layer 820B, and details thereof will be described later.
The anode-side porous body 840 and the cathode-side porous body 850 are each formed of a porous material that has gas diffusivity and electroconductivity, such as a metal porous substance or the like; for example, an expanded metal, a punched metal, a mesh, a felt, etc., may be used. Besides, when seal-integrated power generation assemblies 200 and separators 600 are stacked to construct a fuel cell 100, each anode-side porous body 840 and each cathode-side porous body 850 contact power generation portions DA (described later) of separators 600. Furthermore, the anode-side porous body 840, as described later, functions as a fuel gas supply channel for supplying the fuel gas to the anode 820. The cathode-side porous body 850, as described below, functions as an oxidizing gas supply channel for supplying the oxidizing gas to the cathode 830. Incidentally, the anode-side diffusion layer 820B and the cathode-side diffusion layer 830B used herein are lower in the internal gas flow resistance than the anode-side porous body 840 and the cathode-side porous body 850, respectively, that is, higher in gas permeability than the anode-side porous body 840 and the cathode-side porous body 850.
The electroconductive sheet 860 is formed in a sheet shape (thin film shape) as shown in
Now, the partition wall portions 825 formed in the anode-side diffusion layer 820B will be described. The partition wall portions 825 extend in parallel with each other in the anode-side diffusion layer 820B in the thickness direction (stacking direction) from the electroconductive sheet 860-side surface to the catalyst layer 820A-side surface as shown in
The seal member 700 is disposed around an outer periphery of the laminate member 800 that is located in the planar directions. The seal member 700 is made by the injection molding of a molding material, and is gaplessly and air-tightly integrated with the outer peripheral end of the laminate member 800. The seal member 700 is foimed by a material that has gas impermeability, elasticity, and heat resistance in the operation temperature range of the fuel cell, for example, a rubber or an elastomer. Concretely, silicon-based rubber, butyl rubber, acrylic rubber, natural rubber, fluorocarbon rubber, ethylene-propylene-based rubber, styrene-based elastomer, fluorocarbon elastomer, etc. can be used.
The seal member 700, as shown in
In
The cathode plate 400 (
The anode plate 300 (
The intermediate plate 500, (
Each of the cooling medium channel-forming portions 550 has an elongated hole shape that extends across the power generation region DA in the left-right direction in
In the intermediate plate 500 (
In the intermediate plate 500 (
In the intermediate plate 500 (
The separator 600 (
As shown in
As shown in
The fuel cell 100 generates electric power with the oxidizing gas supplied to the oxidizing gas supply manifold 110 and the fuel gas supplied to the fuel gas supply manifold 130. During the power generation of the fuel cell 100, the cooling medium is supplied to the cooling medium supply manifold 150, and is then supplied to the cooling medium channels 670 (not shown), in order to restrain the temperature rise of the fuel cell 100 caused by the heat generation involved in the power generation. The cooling medium supplied into the cooling medium channels 670 flows from one end of each cooling medium channel 670 to the other end thereof undergoing heat exchange, and then is discharged into the cooling medium discharge manifold 160 (not shown).
The oxidizing gas supplied to the oxidizing gas supply manifold 110 passes, as shown by arrows in
The fuel gas supplied to the fuel gas supply manifold 130 passes, as shown by arrows in
The fuel cell 100 in this embodiment has an anode dead-end structure without any fuel gas discharge channel or any fuel gas discharge channel, so that the fuel gas supplied to each anode-side porous body 840 is substantially entirely absorbed into and consumed in the anode 820. Herein, the “consumption” is a concept that includes the use of the fuel gas in the electrochemical reaction on the anode 820 and also includes the leakage of the fuel gas to the cathode 830 side.
In each laminate member 800, the electroconductive sheet 860 having penetration holes 865 is provided between the anode 820 (the anode-side diffusion layer 820B) and the anode-side porous body 840. In this case, the fuel gas undergoes a large pressure loss when passing through the penetration holes 865. Then, a large pressure difference occurs between the anode 820 (the anode-side diffusion layer 820B) and the anode-side porous body 840; specifically, the pressure becomes considerably higher in the anode-side porous body 840 than in the anode 820 (the anode-side diffusion layer 820B). In association with the large pressure difference, the flow speed of the fuel gas becomes fast, so that the flow speed of the fuel gas becomes faster than the diffusion speed of the leak gas that is made up of nitrogen from air leaking from the cathode side to the anode side, or the like. As a result, the leak gas is restrained from moving from the anode-side diffusion layer 820B into the anode-side porous body 840 (the fuel gas supply channel), and the leak gas is restrained from residing in the anode-side porous body 840 (the fuel gas supply channel).
The efficacy of the fuel cell 100 of this embodiment will be considered in comparison with a fuel cell as a comparative example shown in
The leak gas leaks into the anode-side diffusion layer 820B as mentioned above. If there occurs a flow of the fuel gas from the upstream side toward the downstream side in the anode-side diffusion layer 820B as stated above, the leak gas cannot diffuse against the flow of the fuel gas, and therefore may accumulate in the downstream side of the anode-side diffusion layer 820B. Hence, there is a possibility that the supply of the fuel gas to portions of the catalyst layer 820A that correspond to the portions of the anode-side diffusion layer 820B in which the leak gas is accumulated may be inhibited.
On the other hand, the fuel cell 100 of the embodiment is equipped with the partition wall portions 825 that divide the anode-side diffusion layer 820B into a plurality of blocks BL. With this construction, the fuel gas can be restrained from flowing in the planar directions (from the upstream side to the downstream side) in the anode-side diffusion layer 820B, and therefore the leak gas can be restrained from locally residing, for example, in the lower side or the like, in the anode-side diffusion layer 820B. As a result, it becomes possible to supply the fuel gas to the catalyst layer 820A (the cathode 830) in a dispersed fashion. Therefore, the power generation efficiency of the fuel cell 100 can be improved.
The anode-side diffusion layer 820B is divided into a plurality of blocks BL by the partition wall portions 825 as described above. Therefore, there is possibility of the concentration of the leak gas heightening in a certain block BL. However, in the fuel cell 100 of the embodiment, the fuel gas is supplied at relatively high pressure. Therefore, in a block BL with a heightened leak gas concentration, the fuel gas is inhibited from being supplied into a portion of the catalyst layer 820A that corresponds to the block BL, so that the fuel gas concentration in that block BL gradually heightens. Accordingly, the leak gas in the block BL is forced back to the cathode 830 side. Hence, in each block BL, the abnormal heightening of the leak gas concentration can be restrained, so that the power generation efficiency of the fuel cell 100 can be improved.
In the fuel cell 100 of this embodiment, the partition wall portions 825 are arranged so that each block BL corresponds to one of the penetration holes 865 of the electroconductive sheet 860. This will restrain the leak gas from locally residing in blocks BL in the anode-side diffusion layer 820B.
Furthermore, in the fuel cell 100 of this embodiment, the anode-side diffusion layer 820B employed is lower in the internal flow resistance to gas than the anode-side porous body 840. With this construction, the fuel gas supplied into the anode-side diffusion layer 820B via the penetration holes 865 of the electroconductive sheet 860 can be helped to diffuse within the individual blocks BL of the anode-side diffusion layer 820B.
In the fuel cell 100 of the embodiment, the supply pressure of the fuel gas supplied into the fuel gas supply channel (hereinafter, also referred to as the fuel gas supply pressure) and the supply pressure of the oxidizing gas supplied into the oxidizing gas supply channel (also referred to as the oxidizing gas supply pressure) may be set so that the minimum value of the pressure of the fuel gas flowing in the fuel gas supply channel becomes higher than the maximum value of the partial pressure of the leak gas that leaks into the anode 820 from the cathode 830 via the electrolyte membrane 810. This setting may be provided by adjusting only one of the fuel gas supply pressure and the oxidizing gas supply pressure, or may also be provided by adjusting both the fuel gas supply pressure and the oxidizing gas supply pressure. Incidentally, the set values of the fuel gas supply pressure and/or the oxidizing gas supply pressure are determined on the basis of experimental data that is empirically obtained.
In the foregoing embodiment, the anode 820 may be regarded as an anode or an anode-forming layer, and the cathode 830 may be regarded as a cathode. The anode-side diffusion layer 820B may be regarded as a gas diffusion layer, and the partition wall portions 825 may be regarded as a partition wall portion. The electroconductive sheet 860 may be regarded as a gas introduction portion or an electroconductive sheet portion, and the penetration holes 865 may be regarded as a gas passage portion or a penetration hole, and the anode-side porous body 840 may be regarded as a channel-forming member.
The fuel cell 100A of this embodiment is basically the same in construction as the fuel cell 100 of the first embodiment, but has partition wall portions 825A that are different from the partition wall portions 825 of the first embodiment. In the fuel cell 100A, portions that are the same in construction as those of the first embodiment are assigned with the same reference characters, and descriptions thereof are omitted.
The partition wall portions 825A provided in the fuel cell 100A of this embodiment are partition walls that extend in parallel with each other in the anode-side diffusion layer 820B in the thickness direction (stacking direction) from an electroconductive sheet 860-side surface to a catalyst layer 820A-side surface, similarly to the partition wall portions 825 of the first embodiment. Furthermore, as shown in
The fuel cell 100B of this embodiment is basically the same in construction as the fuel cell 100 of the first embodiment, but has an arrangement of the penetration holes 865 in the electroconductive sheet 860A that is different from the arrangement thereof in the electroconductive sheet 860 of the first embodiment, and has partition wall portions 825B that are different from the partition wall portions 825 of the first embodiment. In the fuel cell 100B, portions that are the same in construction as those of the first embodiment are assigned with the same reference characters, and descriptions thereof are omitted.
In the electroconductive sheet 860A provided in the fuel cell 100B of this embodiment, as shown in
The partition wall portions 825B, similar to the partition wall portions 825 of the first embodiment, extend in parallel with each other in the anode-side diffusion layer 820B in the thickness direction (stacking direction) from the electroconductive sheet 860A-side surface to the catalyst layer 820A-side surface of the anode-side diffusion layer 820B. Furthermore, as shown in
Incidentally, in the anode 820, the amount of generated current becomes larger from the downstream side toward the upstream side in the flowing direction of the oxidizing gas, that is, the amount of the fuel gas demanded becomes larger from the downstream side toward the upstream side in the flowing direction of the oxidizing gas. In the fuel cell 100B of this embodiment, the blocks BL are formed so that the volume of a block BL becomes smaller from the downstream side toward the upstream side in the flowing direction of the oxidizing gas. With this construction, blocks BL located in the upstream side in the flowing direction of the oxidizing gas are supplied with more fuel gas than downstream-side blocks BL. Therefore, in the MEA 24, large amounts of the fuel gas can be supplied to portions where the amount of generated current is large, and therefore in the fuel cell 100B, the power generation efficiency can be improved.
The fuel cell 100C of this embodiment is basically the same in construction as the fuel cell 100 of the first embodiment, but has anode-side diffusion layers 820B1 that are different from the anode-side diffusion layers 820B of the first embodiment. In the fuel cell 100C, portions that are the same in construction as those of the first embodiment are assigned with the same reference characters, and descriptions thereof are omitted.
The anode-side diffusion layer 820B1 provided in the fuel cell 100C of this embodiment is formed so that the gas permeability becomes greater from the upstream side toward the downstream side in the flowing direction of the oxidizing gas, as shown in
Incidentally, in the MEA 24, the generated current becomes smaller from the upstream side toward the downstream side in the flowing direction of the oxidizing gas, in other words, the amount of the fuel gas demanded becomes smaller in the anode 820 from the upstream side toward the downstream side in the flowing direction of the oxidizing gas. Then, in a portion of the anode 820 that corresponds to the downstream side in the flowing direction of the oxidizing gas, there is possibility that the amount of supply of the fuel gas may decrease, and therefore the leak gas partial pressure may heighten, that is, the leak gas may reside. Then, in such a portion, the supply of the fuel gas is more and more restrained, so that there is possibility of decline in the power generation efficiency of the fuel cell 100C.
However, in the fuel cell 100C of this embodiment, since the anode-side diffusion layer 820B1 is formed so that the gas permeability becomes greater from the from the upstream side toward the downstream side in the flowing direction of the oxidizing gas, it is possible to restrain reducing the amount of supply of the fuel gas in a portion of the anode-side diffusion layer 820B1 that corresponds to the downstream side in the flowing direction of the oxidizing gas. Accordingly, in that portion, the decline in the power generation efficiency can be prevented, and therefore the power generation efficiency of the fuel cell 100C can be improved.
In each electroconductive sheet 860B provided in the fuel cell 100D of this embodiment, penetration holes 865A are formed so that they are inclined with respect to the thickness direction (stacking direction) of the electroconductive sheet 860B as shown in
The partition wall portions 825C provided in the fuel cell 100E of this embodiment, similar to the partition wall portions 825 of the fifth embodiment, extend from the electroconductive sheet 860B-side surface to the catalyst layer 820A-side surface in the anode-side diffusion layer 820B in the thickness direction (stacking direction) thereof, and divide the anode-side diffusion layer 820B into a plurality of blocks BL as shown in
The partition wall portions 825D provided in the fuel cell 100E of this embodiment, as shown in
The invention is not limited to the foregoing embodiments, but may be carried out in various forms without departing from the spirit of the invention.
H1. Modification 1:
H2. Modification 2:
Although in the individual fuel cells of the foregoing embodiments, the blocks BL divided by the partition wall portion are arranged so as to face a corresponding one of the penetration holes of the electroconductive sheet, the invention is not limited to this construction. For example, the blocks BL divided by the partition wall portion may be arranged so as to correspond to a plurality of the penetration holes 865 of the electroconductive sheet. This will also achieve substantially the same effects as in the fuel cell of the foregoing embodiment.
H3. Modification 3:
Although in the fuel cells of the foregoing embodiments, the opening diameters of the penetration holes of the electroconductive sheet are the same, the invention is not limited to this arrangement. For example, the penetration holes of the electroconductive sheet may be formed so that the opening diameters thereof are larger the greater the relative distance thereof from the oxidizing gas supply slit 440 (i.e., from the oxidizing gas supply openings for supplying the oxidizing gas to the cathode 830), in other words, the shorter the relatively distance from the oxidizing gas discharge slit 444 (i.e. from the oxidizing gas discharge openings for discharging the oxidizing gas from the cathode 830).
H4. Modification 4:
Although in the fuel cells of the foregoing embodiments, the electroconductive sheet used is a gold sheet, the invention is not limited to this construction. For example, the electroconductive sheet may also be foimed from an electroconductive member other than gold, for example, may be formed from titanium, stainless steel, etc. In this case, the electroconductive sheet is joined to one side surface of the anode-side porous body 840 by thermocompression bonding, brazing, welding, or the like.
Furthermore, the electroconductive sheet may be formed from a polymer type electroconductive paste. Examples of this polymer type electroconductive paste include a silver paste, a carbon paste, a silver-carbon paste, etc. In this case, after the polymer type electroconductive paste is formed into a sheet shape, the sheet may be joined to one side surface of the anode-side porous body 840.
H5. Modification 5:
Although the fuel cells of the foregoing embodiments have a closed structure (anode dead-end structure) in which the fuel gas supplied to the anode side is not discharged to the outside, the invention is not limited to this structure. The fuel cell of the invention may also have a mechanism for discharging the fuel gas from the anode 820 side, for example, a fuel gas discharge opening, a fuel gas discharge channel, a fuel gas discharge manifold, etc. Such a fuel cell may also include a shutoff valve capable of shutting off the fuel gas discharged from the fuel gas discharge manifold to the outside of the fuel cell (hereinafter, referred to as the shutoff valve N), and may have an operation mode in which while the shutoff valve N is in the closed state, substantially the entire amount of the fuel gas supplied to the anode-side porous body 840 (the anode side) is caused to be absorbed into and consumed in the anode 820. This construction can also achieve substantially the same effects as the fuel cell 100 of the foregoing embodiments.
H6. Modification 6:
Although in the fuel cells of the foregoing embodiments, the partition wall portions are formed by impregnating the anode-side diffusion layer 820B with a resin, the invention is not limited to this construction. For example, the partition wall portions may also be formed by incorporating a punched metal, a laminated mesh-like member, etc. into the anode-side diffusion layer 820B. This construction can also achieve substantially the same effects as the fuel cells of the foregoing embodiments.
H7. Modification 7:
Although in the anodes 820 of the fuel cells of the embodiments, the partition wall portions are formed only in the anode-side diffusion layer 820B, the invention is not limited to this construction. For example, the partition wall portions may also be fowled not only in the anode-side diffusion layer 820B, but in the catalyst layer 820A as well. With this construction, in the anode-side diffusion layer 820B and the catalyst layer 820A, the fuel gas can be restrained from flowing in the planar directions, and therefore the leak gas can be restrained from locally residing in the anode-side diffusion layer 820B and the catalyst layer 820A (the entire anode 820). In consequence, it becomes possible to supply the fuel gas to the anode 820 in a dispersed fashion.
H8. Modification 8:
Although in each anode 820 of the fuel cells of the foregoing embodiments, the catalyst layer 820A and the anode-side diffusion layer 820B are provided and the partition wall portions are formed in the anode-side diffusion layer 820B, the invention is not limited to this construction. For example, the anode 820 may also be constructed only of the catalyst layer 820A without the anode-side diffusion layer 820B, and the partition wall portions may be formed only in the catalyst layer 820A. With this construction, in the catalyst layer 820A, the fuel gas can be restrained from flowing in the planar directions, and therefore, the leak gas can be restrained from locally residing in the catalyst layer 820A.
Furthermore, in the anodes 820, an electroconductive porous body may further be provided between the catalyst layer 820A and the anode-side diffusion layer 820B. The electroconductive porous body may be a body in which the flow resistance in the planar directions is small, that is, the gas easily flows in the planar directions. With this construction, in the anodes 820, the dispersibility of the fuel gas can be improved.
H9. Modification 9:
Although in the fuel cells of the foregoing embodiments, air is used as the oxidizing gas, the invention is not limited to this construction. For example, it suffices that the oxidizing gas contain oxygen, and a predetermined mixture gas in which a gas other than oxygen has been mixed can be used.
H10. Modification 10:
Although in the fuel cells of the foregoing embodiments, the anode-side diffusion layer 820B is formed from a porous material, the invention is not limited to this construction. It suffices that the anode-side diffusion layer 820B have gas diffusivity; for example, it may be a space. This can also achieve the effects of the foregoing embodiments.
H11. Modification 11:
The fuel cells of the foregoing embodiments are fuel cells of an anode dead-end operation type in which the fuel gas does not need to be circulated by a circulation pump or the like. Thus, space can be saved or the pump power for circulation can be reduced, so that the energy efficiency can be improved. Therefore the fuel cells of the foregoing embodiments are suitable to be mounted in mobile units such as motor vehicles, electric railcars, airplanes, boats and ships, linear motor cars, etc.
H12. Modification 12:
Although the fuel cells of the foregoing embodiments are anode dead-end operation type fuel cells, the invention is not limited to this type of fuel cell, but may also be applied to circulation type fuel cells in which the fuel gas is circulated.
H13. Modification 13:
Although in the fuel cells of the foregoing embodiments, the anode-side diffusion layer 820B is higher in gas permeability than the anode-side porous body 840, the invention is not limited to this construction, that is, it is also permissible that the anode-side porous body 840 be higher in gas permeability than the anode-side diffusion layer 820B. With this construction, the fuel gas easily disperses in the anode-side porous body 840, so that the fuel gas can be supplied to the individual blocks BL in a dispersed fashion.
H14. Modification 14:
Although the fuel cells of the foregoing embodiments are solid polymer type fuel cells, the invention is not limited to this type of fuel cell, but is applicable to various fuel cells such as hydrogen separation membrane type fuel cells, molten carbonate electrolyte type fuel cells, solid oxide type fuel cells, phosphoric acid type fuel cells, etc.
H15. Modification 15:
The fuel cells of the foregoing embodiments adopt a structure in which the fuel gas supplied to the anode 820 is substantially entirely consumed on the anode. As for the channel construction for supplying the fuel gas to the anode 820 which enables the operation in such a structure, various channel constructions can be adopted. Hereinafter, modifications of the construction for supplying the fuel gas to the anode 820 in a shower manner as in the fuel cells of the foregoing embodiments (referred to also as the shower channel type) will be described.
First Modification of Shower Channel:
The diameter and the pitch of the penetration holes 2110 of the dispersion plate 2100 can be empirically determined, and may also be set so that the flow speed of the fuel gas passing through the penetration holes 2110 can sufficiently restrain the diffusion-caused reverse flow of nitrogen gas, for example, in a predetermed operation state (e.g., a rated operation state). It suffices to set the intervals and the channel sectional area of the penetration holes 2110 so as to produce a flow speed or a pressure loss in the penetration holes 2110 that is sufficient to satisfy this condition. For example, with regard to a solid polymer fuel cell, it has been confirmed that a sufficient flow speed or a sufficient pressure loss is produced if the numerical aperture of the dispersion plate 2100 is set at about 1% or less. This numerical aperture is smaller by one to two orders than in the circulation type fuel gas channel, and the construction is essentially different from a construction in which a certain amount of flow of the fuel gas is secured by employing a compressor in a circulation-type fuel gas channel. In this modification, a sufficient amount of the fuel gas is secured despite the structure of a low numerical aperture, by leading the high-pressure hydrogen from the fuel tank directly (or after being adjusted to a predetermined high pressure by a pressure regulating valve) to the fuel cell.
Second Modification of Shower Channel:
Third Modification of Shower Channel:
According to this construction, the dispersion plate 2102 can easily be formed by a pressing process, and an advantage of the channel upstream of the dispersion plate 2102 being able to be easily formed is obtained. Since the fuel gas that has passed through the pores 2112 reaches the anode 2200 via the internal spaces of the protrusions 2102t, sufficient dispersibility can be secured. The pores 2112 may be formed by a pressing process, or may also be formed by other techniques, such as an electric discharge process or the like, in a processing step preceding or succeeding to the formation of the protrusions 2102t. It suffices that the numerical aperture based on the pores 2112 be determined in substantially the same manner as in the first modification of the shower channel.
Fourth Modification of Shower Channel:
Fifth Modification of Shower Channel:
As described above, various constructions can be adopted as long as a structure in which the fuel gas is guided while the anode 2200 is being dispersed is provided. The dispersion plate is not limited to a porous body or a pressed metal, but may be made of any material as long as the dispersion plate is constructed so as to guide the fuel gas to the anode 2200 while dispersing the fuel gas.
H16. Modification 16:
Although in the fuel cells of the foregoing embodiments, the fuel gas supply channel is a porous body type channel formed by using a porous body, the fuel gas supply channel may have various configurations. Hereinafter, modifications of the fuel gas supply channel will be described.
This channel-forming member 5000 can be formed by using a carbon, a metal, etc. In the case where a carbon is used, the channel-forming member 5000 provided with channels as shown in
Incidentally, this channel-forming member 5000 may be used instead of the entire anode-side porous body 840, or may also replace the anode-side porous body 840 and the electroconductive sheet 860 combined. In this case, it suffices that the comb-tooth channels 5030 be sufficiently narrow channels and a great number of them be branched from the subsidiary channels 5020 finely, that is, in the fashion of capillary vessels. Besides, in
Next, with reference to
As shown in
The channel-forming member 5100 shown in
H17. Modification 17:
In this fuel cell 6000, when the fuel gas supplied from the fuel gas inlet port 6210 is injected from an injection hole 6320 of the nozzle 6300 into a fuel gas supply channel (recess portion 6220), the fuel gas is restricted in the flowing direction by the inner-side walls of the recess portion 6220 of the anode-side separator 6200 and by the restriction plate 6230, so that the fuel gas flows from the upstream side to the downstream side along the surface of the anode 6100, as shown by hollow arrows in
Incidentally, although in the fuel cell 6000 of the foregoing modification, the fluid is circulated in directions along the surface of the anode 6100 by utilizing the ejector effect, any other construction may also be employed as long as it is a construction in which the fluid can be circulated in directions along the surface of the anode within the fuel cell. For example, in the fuel cell 6000, a rectifier plate is provided at a site that can form a fuel gas supply channel, such as a site in the surface of the anode 6100, the anode-side separator 6200, etc., instead of the nozzle 6300 or the restriction plate 6230, and the fluid may be circulated in directions along the surface of the anode 6100 by this rectifier plate and the flow of the fuel gas. Alternatively, a small actuator (e.g., a micro-machine) may be incorporated along a circulation path within a gas channel, such as the recess portion 6220 or the like, to form a structure that causes the fuel gas to circulate. Furthermore, a construction in which a temperature difference is provided within the recess portion 6220 and the convection is utilized to cause the circulation is also conceivable.
H18. Modification 18:
Using
The first modification and the second modification of the fuel gas supply configuration are different from the foregoing embodiments in that in the anode-side porous body, the fuel gas is supplied from two directions. The first and second modifications of the fuel gas supply configuration are substantially the same in the overall construction, and are the same in that the fuel gas is supplied to a separator (not shown), but are different from each other in the direction of supply of the fuel gas to the anode-side porous body 7540. In the first modification of the fuel gas supply configuration, as shown in
In the first modification of the fuel gas supply configuration, the fuel gas is supplied through the fuel gas supply slit 7417a or the fuel gas supply slit 7417b into the anode-side porous body 7540, flowing from the long side end portion sides toward a middle portion of the anode-side porous body 7540, that is, in the direction of arrows 7600a (downward from a top in
According to the first and second modifications of the fuel gas supply configuration, the fuel gas is supplied to the anode-side porous body 7540 in two opposite directions from the fuel gas supply slits 7417a, 7417b (or the fuel gas supply slits 7517a, 7517b) that are provided near two opposite side end portions of the anode-side porous body 7540. The opposing flows of the fuel gas thus supplied collide and mix with each other at a middle portion of the anode-side porous body 7540. Therefore, an advantage of the leak gas (inert gas) being unlikely to be localized can be achieved. Hence, the power generation efficiency of the fuel cell can be improved. Also, since the fuel gas is supplied from two opposite sides, an advantage of the distribution of the fuel gas being restrained from deviating from a desired one within the anode-side porous body 7540 can be achieved. Incidentally, although the first and second modifications of the fuel gas supply configuration employ a porous body as the fuel gas supply channel, the fuel gas supply channel is not limited to a porous body, but various other supply methods described below may be used.
H19. Modification 19:
A startup-time control of the fuel cells of the foregoing embodiments will be described. In a fuel cell in accordance with this modification, when the fuel cell is started up, the supply of the fuel gas to the anode-side fuel gas channel is started, and it is only after a predetermined time TA elapses that a load is connected to the fuel cell and current is extracted from the fuel cell. Due to this operation, the leak gas (nitrogen gas or an inert gas) having leaked from the cathode side to the anode side and having been residing therein following the end of the power generation of the fuel cell is pushed back to the cathode side by the pressure of the fuel gas during the predetermined time TA. Hence, after the amount of the leak gas residing in the anode side has decreased, a load is connected to the fuel cell. Therefore, it is possible to restrain the occurrence of a situation that at the startup of the fuel cell, the fuel is operated while the fuel gas is lacking in the anode 820. Incidentally, the “startup” herein means to supply the reaction gases (the fuel gas and the oxidizing gas) to the fuel cell and connect a load to the fuel cell. A reason why the leak gas resides in the anode side during a stop of the fuel cell is that as a result of the stop of the supply of the fuel gas, the fuel gas pressure in the anode side declines. In particular, in the case where an anode dead-end construction is adopted, the discharge of the leak gas to a discharge path by the supply of the fuel gas cannot be expected. Therefore, it is effective to secure a sufficient time TA following the start of the supply of the fuel before a load is connected to the fuel cell.
It is also possible to adopt a construction in which, at the time of startup of the fuel cell, at least one of the amount of supply of the fuel gas and the predetermined time TA prior to the connection of an electrical load to the fuel cell is determined on the basis of the amount of the leak gas residing at the starting time of operation of the fuel cell. This leak gas residence amount may be estimated, for example, from the temperature of the fuel cell or the duration of the stop of the fuel cell from the previous end of the startup to the present startup of the fuel cell. The temperature of the fuel cell can be detected, for example, on the basis of the temperature of the coolant that cools the fuel cell. This will decrease the leak gas residence amount in the anode-side fuel gas channel while realizing a shortened startup time of the fuel cell.
Furthermore, the timing of connecting a load to the fuel cell at the time of startup thereof may be determined the basis of the hydrogen concentration on the anode side. In the fuel cells of the foregoing embodiments, a hydrogen concentration sensor is attached to a predetermined site in the anode-side fuel gas channel. At the time of startup of the fuel cell, the hydrogen concentration value detected by the hydrogen concentration sensor after the supply of the fuel gas to the anode-side fuel gas channel starts is monitored. If an electrical load is connected to the fuel cell after the hydrogen concentration value becomes higher than a predetermined threshold value, the operation with hydrogen lacking on the anode 820 can be restrained. Besides, it is also possible to adopt a construction in which the timing at which an electrical load is connected to the fuel cell is found from the anode-side pressure or temperature.
The fuel cells described above in conjunction with the embodiments include, as the mode of operation performed by supplying the fuel gas, a mode in which substantially the entire amount of fuel gas supplied is consumed on the anode. The term “substantially the entire amount of fuel gas supplied is consumed” herein means that the fuel gas is not used in a manner in which the fuel gas is actively extracted from the anode and is circulated in the fuel gas supply path. The consumption of the fuel gas includes the use thereof in the electrochemical reactions for power generation, but also the permeation thereof through the electrolyte membrane to the opposite side. Besides, the leak that occurs in a fuel cell that is constructed in reality may also be included in the consumption. The power generation performed in a fuel cell while the fuel gas is used as described above is called dead-end operation. This operation can be understood as a mode of operation in which the fuel gas is substantially entirely used for power generation while the fuel gas is not discharged to the outside but is residing within the fuel gas. Accordingly, this means that the anode supplied with the fuel gas generally has a closed structure in which the fuel gas is not discharged or released.
The operation of the fuel cell performed by supplying the fuel gas to the anode side of the power generator is called the anode dead-end operation. In the anode dead-end operation, the electric power generation is continued in a state where the fuel gas is not discharged from the anode side while the supply of the fuel gas to the anode side is continued. Accordingly, the power generation is performed while substantially the entire amount of the fuel gas supplied is held on the anode side at least during a steady power generation. In the case where the power generator includes an MEA (membrane-electrode assembly) formed by joining an anode and a cathode to two opposite surfaces of an electrolyte membrane, and generates electric power by supplying the fuel gas (hydrogen or a hydrogen-containing gas in most cases) to the anode side, substantially the entire amount of the fuel gas supplied to the anode is utilized for the power generation while being caused to reside inside without being discharged to the outside. Accordingly, this means that the anode side supplied with the fuel gas generally has a closed structure in which the fuel gas is not discharged or released.
In the foregoing embodiments, the mode of operation in which substantially the entire amount of the fuel gas supplied to the fuel gas-consuming layer (anode) is consumed on the fuel gas consumption layer is called the dead-end operation. Even if such a construction is provided with an added Rhin in which the circulation of the fuel gas from the fuel gas consumption layer is not intended but the fuel gas is nominally extracted for use from the fuel gas consumption layer, this whole construction is included in the dead-end operation. For example, it is possible to conceive a construction in which a channel for extracting a small amount of the fuel gas from the fuel gas consumption layer or an upstream side thereof is provided and the extracted gas is burned to pre-heat accessories and the like. Such nominal consumption of the fuel gas is not a construction that is to be excluded from the “consumption of substantially the entire amount of the fuel gas by the fuel gas consumption layer” in the foregoing embodiments unless there is a special meaning with the extraction of the fuel gas from the fuel gas consumption layer or the upstream side thereof.
The fuel cells in accordance with the foregoing embodiments can also be grasped as fuel cells that realize the operation state in which the power generation is continuously performed in a state in which the partial pressure of an impurity (e.g., nitrogen) in the anode (or the hydrogen electrode) is in balance with the partial pressure of an impurity (e.g., nitrogen) of the cathode (or the air electrode). Incidentally, the term “in balance” means, for example, an equilibrium state, and is not limited to the state in which the two partial pressures are equal.
The fuel cells in accordance with the foregoing embodiments include constructions as shown in
Although the first channel and the second channel can be formed by utilizing a porous body as in the foregoing embodiments, the channels may also be constructed, for example, as a channel configuration sandwiched by seal members S1, S2 (
The high-resistance communication portion 2100x used herein can be a platy member in which a plurality of introduction portions 2110x (penetration holes) are dispersed in in-plane directions as shown in
Furthermore, the fuel cells in accordance with the foregoing embodiments may also be grasped as the following fuel cell system. Specifically, this fuel cell system is a fuel cell system that includes a mode in which substantially the entire amount of a fuel gas supplied is consumed in an anode reaction portion, and includes an introduction opening that introduces an anode gas into a power generation cell, a first gas channel leading the anode gas supplied from the introduction opening into in-cell-plane directions, and a high-resistance portion that extends along the anode reaction portion, and that is higher in flow resistance than the first gas channel, and that leads the anode gas from the first gas channel to a second gas channel via a plurality of communication portions distributed in the in-cell-plane directions while preventing the inflow of the anode gas from the first gas channel to the second gas channel.
The fuel cells of the foregoing embodiments can also be grasped as a fuel cell system that includes the following construction. Specifically, this fuel cell system may have a construction in which the high-resistance portion has one communication portion that corresponds to one region in the anode reaction portion, and another communication portion that corresponds to another region in the anode reaction portion, and in which, in the anode gas consumed in the one region, the proportion of the gas that has passed through the one communication portion in the high-resistance portion is higher than the proportion of the gas that has passed through the another communication portion, or a construction in which the high-resistance portion has one communication portion that corresponds to one region in the anode reaction portion, and another communication portion that corresponds to another region in the anode reaction portion, and in which, in the anode gas that has passed through the one communication portion, the proportion of the gas that is consumed in the one region in the anode reaction portion is higher than the proportion of the gas that is consumed in the another region in the anode reaction portion.
The cathode channel, on the other hand, may have a construction in which at least the high-resistance communication portion is omitted. Furthermore, the cathode channel may be provided with only a first gas channel that leads the cathode gas supplied from the cathode introduction opening in in-cell-plane directions, without the second channel. However, if the so-called gas diffusion layer is considered as a second channel, the cathode channel may be a combination of the first and second channels. In any case, due to the omission of the high-resistance communication portion only from the cathode electrode, the amount of work of the cathode gas feeder can be expected to decrease and the drainage characteristic at the cathode electrode can be expected to improve. Thus, the foregoing construction is particularly suitable in a system in which the performance of drainage from the anode electrode is low (there is no steady discharge of the fuel gas).
The invention is not limited to the fuel cells in accordance with the foregoing embodiments, but can also be realized in other manners of device invention. Besides, the invention can also be realized in manners as a method invention, such as a production method for a fuel cell, or the like.
While the invention has been described with reference to what are considered to be preferred embodiments thereof, it is to be understood that the invention is not limited to The disclosed embodiments or constructions. On the contrary, the invention is intended to cover various modifications and equivalent arrangements. In addition, while the various elements of the disclosed invention are shown in various combinations and configurations, which are exemplary, other combinations and configurations, including more, less or only a single element, are also within scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2007-048513 | Feb 2007 | JP | national |
2007-186618 | Jul 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB08/00424 | 2/27/2008 | WO | 00 | 8/24/2009 |