The present disclosure relates to systems and methods for supplying fuel, enabling communications, and/or conveying electric power to machines, and more particularly, to systems and methods for supplying fuel, enabling communications, and/or conveying electric power to a plurality of hydraulic fracturing units.
Fracturing is an oilfield operation that stimulates production of hydrocarbons, such that the hydrocarbons may more easily or readily flow from a subsurface formation to a well. For example, a fracturing system may be configured to fracture a formation by pumping a fracking fluid into a well at high pressure and high flow rates. Some fracking fluids may take the form of a slurry including water, proppants, and/or other additives, such as thickening agents and/or gels. The slurry may be forced via one or more pumps into the formation at rates faster than can be accepted by the existing pores, fractures, faults, or other spaces within the formation. As a result, pressure builds rapidly to the point where the formation fails and begins to fracture. By continuing to pump the fracking fluid into the formation, existing fractures in the formation are caused to expand and extend in directions farther away from a well bore, thereby creating flow paths to the well bore. The proppants may serve to prevent the expanded fractures from closing when pumping of the fracking fluid is ceased or may reduce the extent to which the expanded fractures contract when pumping of the fracking fluid is ceased. Once the formation is fractured, large quantities of the injected fracking fluid are allowed to flow out of the well, and the production stream of hydrocarbons may be obtained from the formation.
A fracturing system includes a large number of separate components required for executing a fracturing operation, each of which must be transported to the fracturing site in an at least partially disassembled state, assembled, and provided with a supply of fuel and electricity for operation, as well as data communications links for controlling the operation. Providing fuel delivery lines, communications links, and electric power to and between the numerous components when setting-up the fracturing operation requires a significant number of skilled personnel, numerous tools, and a substantial amount of time, all contributing significantly to the cost of the fracturing operation. Following completion of the fracturing operation, the components must be broken-down and transported from the fracturing site to another fracturing site. Thus, significant time and cost are involved with setting-up and tearing-down the fracturing operation. In addition, depending on the requirements of a particular operation and the site on which it occurs, different a fracturing operations may require different components and arrangements, which may add complexity to setting-up and tearing-down the fracturing operation, further adding to the time and costs associated with the fracturing operation.
Accordingly, it can be seen that a need exists for systems and methods that provide greater efficiency when setting-up and tearing-down components associated with a fracturing operation. The present disclosure may address one or more of the above-referenced drawbacks, as well as other possible drawbacks.
The present disclosure is generally directed to systems and methods for supplying fuel, enabling communications, and/or conveying electric power to machines, and more particularly, to a plurality of hydraulic fracturing units associated with a hydraulic fracturing system. For example, in some embodiments, a fuel line connection assembly for providing flow communication between a fuel source and a first gas turbine engine of a plurality of gas turbine engines may include a manifold line defining an inlet end, an outlet end, and a flow path for fuel extending between the inlet end and the outlet end. The fuel line connection assembly may further include an inlet coupling proximate the inlet end and configured to be connected to a fuel line providing flow communication with the fuel source, and an outlet coupling proximate the outlet end and configured to be connected to one of an inlet end of another manifold line or a blocking device configured to prevent flow from the outlet end of the manifold line. The fuel line connection assembly may further include a distribution line connected to the manifold line and configured to provide flow communication between the manifold line and the first gas turbine engine, and a valve in one of the manifold line or the distribution line and configured to change between an open condition through which fluid flows and a closed condition preventing fluid flow. The valve may be configured to one of facilitate flow communication or prevent flow communication between the fuel source and the first gas turbine engine. The fuel line connection assembly may be configured to one of: (1) provide flow communication between a second gas turbine engine of the plurality of gas turbine engines upstream of the first gas turbine engine and a third gas turbine engine of the plurality of gas turbine engines downstream of the first gas turbine engine; or (2) provide flow communication solely between the fuel source and the first gas turbine engine.
According some embodiments, a fuel delivery system configured to supply fuel to a plurality of gas turbine engines connected to a plurality of pumps of a hydraulic fracturing system may include a plurality of fuel line connection assemblies. The fuel line connection assemblies may include a manifold line defining an inlet end, an outlet end, and a flow path for fuel extending between the inlet end and the outlet end. The fuel line connection assembly may also include an inlet coupling proximate the inlet end and configured to be connected to a fuel line providing flow communication with the fuel source, and an outlet coupling proximate the outlet end and configured to be connected to one of an inlet end of another manifold line or a blocking device configured to prevent flow from the outlet end of the manifold line. The fuel line connection assembly may also include a distribution line connected to the manifold line and configured to provide flow communication between the manifold line and the first gas turbine engine, and a valve in one of the manifold line or the distribution line and configured to change between an open condition through which fluid flows and a closed condition preventing fluid flow. The valve may be further configured to one of facilitate flow communication or prevent flow communication between the fuel source and the first gas turbine engine. A first fuel line connection assembly of the plurality of fuel line connection assemblies may be in flow communication with a first outlet coupling of the fuel source via an inlet coupling of the first fuel line connection assembly. A second fuel line connection assembly of the plurality of fuel line connection assemblies may be in flow communication with one of an outlet coupling of the first fuel line connection assembly or a second outlet coupling of the fuel source via an inlet coupling of the second fuel line connection assembly.
According to some embodiments, a method for pressure testing at least a portion of a fuel delivery system for supplying fuel from a fuel source to a plurality of gas turbine engines may include causing a first valve to be in an open condition. The first valve may be configured to one of facilitate flow communication or prevent flow communication between the fuel source and a first gas turbine engine of the plurality of gas turbine engines. The method may further include causing a second valve to be in a closed condition. The second valve may be configured to one of facilitate flow communication or prevent flow communication between a filter configured to filter one or more of particulates or liquids from fuel and the first gas turbine engine. The method may further include causing a third valve to be in an open condition. The third valve may be configured to one of facilitate flow communication or prevent flow communication between a pressure source and the filter. The method may further include increasing pressure via the pressure source in the at least a portion of the fuel delivery system, and monitoring a signal indicative of pressure in the at least a portion of the fuel delivery system. The method may also include, based at least in part on the signal, determining whether the at least a portion of the fuel delivery system has a leak.
According to some embodiments, a system for supplying fuel, enabling communications, and conveying electric power associated with operation of a hydraulic fracturing unit associated with a plurality of hydraulic fracturing units may include a fuel line connection assembly configured to be connected to the hydraulic fracturing unit and to supply fuel from a fuel source to a first gas turbine engine connected to the hydraulic fracturing unit. The fuel line connection assembly may include a manifold line defining an inlet end, an outlet end, and a flow path for fuel extending between the inlet end and the outlet end. The fuel connection assembly may also include a distribution line connected to the manifold line and configured to provide flow communication between the manifold line and the first gas turbine engine. The fuel line connection assembly may be configured to one of: (1) provide flow communication between one of the fuel source or a second gas turbine engine of the plurality of the hydraulic fracturing units upstream of the first gas turbine engine and a third gas turbine engine of the plurality of hydraulic fracturing units downstream of the first gas turbine engine; or (2) provide flow communication solely between the fuel source and the first gas turbine engine. The system may also include a communications cable assembly configured to be connected to the hydraulic fracturing unit and to enable data communications between the hydraulic fracturing unit and one of a data center remote from the hydraulic fracturing unit or a second hydraulic fracturing unit of the plurality of hydraulic fracturing units. The communications cable assembly may include a length of communications cable and a communications cable storage apparatus configured to be connected to the hydraulic fracturing unit, to store the length of communications cable when not in use, and to facilitate deployment of at least a portion of the length of communications cable for connection to the one of the data center or the second hydraulic fracturing unit. The system may also include a power cable assembly configured to be connected to the hydraulic fracturing unit and to convey electric power between the hydraulic fracturing unit and one or more of a remote electrical power source or one or more of the plurality of hydraulic fracturing units. The power cable assembly may include a length of power cable and a power cable storage apparatus configured to be connected to the hydraulic fracturing unit, to store the length of power cable when not in use, and to facilitate deployment of at least a portion of the length of power cable for use.
According to some embodiments, a hydraulic fracturing unit may include a chassis, a pump connected to the chassis and configured to pump a fracturing fluid, and a first gas turbine engine connected to the chassis and configured to convert fuel into a power output for operating the pump. The hydraulic fracturing unit may also include a system for supplying fuel, enabling communications, and conveying electric power associated with operation of the hydraulic fracturing unit. The system may include a fuel line connection assembly connected to the hydraulic fracturing unit and configured to supply fuel from a fuel source to the first gas turbine engine connected to the chassis. The fuel line connection assembly may include a manifold line defining an inlet end, an outlet end, and a flow path for fuel extending between the inlet end and the outlet end. The fuel line connection assembly may also include a distribution line connected to the manifold line and configured to provide flow communication between the manifold line and the first gas turbine engine. The fuel line connection assembly may be configured to one of: (1) provide flow communication between one of the fuel source or a second gas turbine engine of a second hydraulic fracturing unit upstream of the first gas turbine engine and a third gas turbine engine of a hydraulic fracturing unit downstream of the first gas turbine engine; or (2) provide flow communication solely between the fuel source and the first gas turbine engine. The system may also include a communications cable assembly connected to the hydraulic fracturing unit and configured to enable data communications between the hydraulic fracturing unit and one of a data center remote from the hydraulic fracturing unit or an additional hydraulic fracturing unit. The communications cable assembly may include a length of communications cable and a communications cable storage apparatus connected to the hydraulic fracturing unit and configured to store the length of communications cable when not in use and to facilitate deployment of at least a portion of the length of communications cable for connection to the one of the data center or the another hydraulic fracturing unit. The system may also include a power cable assembly connected to the hydraulic fracturing unit and configured to convey electric power between the hydraulic fracturing unit and one or more of a remote electrical power source or one or more additional hydraulic fracturing units. The power cable assembly may include a length of power cable and a power cable storage apparatus connected to the hydraulic fracturing unit and configured to store the length of power cable when not in use and facilitate deployment of at least a portion of the length of power cable for use.
According to some embodiments, a hydraulic fracturing system may include a plurality of hydraulic fracturing units. The hydraulic fracturing system may include a main fuel line configured to supply fuel from a fuel source to a plurality of hydraulic fracturing units. The hydraulic fracturing system may also include a first hydraulic fracturing unit including a chassis, a pump connected to the chassis and configured to pump fracturing fluid, and a first gas turbine engine connected to the chassis and configured to convert fuel into a power output for operating the pump. The hydraulic fracturing system may also include a system for supplying fuel, enabling communications, and conveying electric power associated with operation of the first hydraulic fracturing unit. The system may include a fuel line connection assembly connected to the first hydraulic fracturing unit and configured to supply fuel from the fuel source to the first gas turbine engine. The fuel line connection assembly may include a manifold line defining an inlet end, an outlet end, and a flow path for fuel extending between the inlet end and the outlet end. The manifold line may be configured to provide at least a portion of a flow path for supplying fuel to the first gas turbine engine. The fuel line connection assembly may be configured to one of: (1) provide flow communication between one of the main fuel line or a second gas turbine engine of a second hydraulic fracturing unit upstream of the first gas turbine engine and a third gas turbine engine of a third hydraulic fracturing unit downstream of the first gas turbine engine; or (2) provide flow communication solely between the main fuel line and the first gas turbine engine. The system may also include a communications cable assembly including a length of communications cable connected to the first hydraulic fracturing unit and configured to enable data communications between the first hydraulic fracturing unit and one of a data center remote from the first hydraulic fracturing unit or one or more additional hydraulic fracturing units of the plurality of hydraulic fracturing units. The system may also include a power cable assembly including a length of power cable connected to the first hydraulic fracturing unit and configured to convey electric power between the first hydraulic fracturing unit and one or more of a remote electrical power source or one or more additional hydraulic fracturing units of the plurality of hydraulic fracturing units. The hydraulic fracturing system may also include a data center configured to one or more of transmit communications signals or receive communications signals. The communications signals may include data indicative of operation of one or more of the plurality of hydraulic fracturing units.
Still other aspects, embodiments, and advantages of these exemplary embodiments and embodiments, are discussed in detail below. Moreover, it is to be understood that both the foregoing information and the following detailed description provide merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Accordingly, these and other objects, along with advantages and features of the present invention herein disclosed, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations.
The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure, and together with the detailed description, serve to explain principles of the embodiments discussed herein. No attempt is made to show structural details of this disclosure in more detail than can be necessary for a fundamental understanding of the embodiments discussed herein and the various ways in which they can be practiced. According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings can be expanded or reduced to more clearly illustrate embodiments of the disclosure.
Referring now to the drawings in which like numerals indicate like parts throughout the several views, the following description is provided as an enabling teaching of exemplary embodiments, and those skilled in the relevant art will recognize that many changes can be made to the embodiments described. It also will be apparent that some of the desired benefits of the embodiments described can be obtained by selecting some of the features of the embodiments without utilizing other features. Accordingly, those skilled in the art will recognize that many modifications and adaptations to the embodiments described are possible and can even be desirable in certain circumstances. Thus, the following description is provided as illustrative of the principles of the embodiments and not in limitation thereof.
The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. As used herein, the term “plurality” refers to two or more items or components. The terms “comprising,” “including,” “carrying,” “having,” “containing,” and “involving,” whether in the written description or the claims and the like, are open-ended terms, i.e., to mean “including but not limited to,” unless otherwise stated. Thus, the use of such terms is meant to encompass the items listed thereafter, and equivalents thereof, as well as additional items. The transitional phrases “consisting of” and “consisting essentially of,” are closed or semi-closed transitional phrases, respectively, with respect to any claims. Use of ordinal terms such as “first,” “second,” “third,” and the like in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish claim elements.
In some examples, one or more of the hydraulic fracturing units 12 may include directly driven turbine (DDT) pumping units, in which pumps 18 are connected to one or more gas turbine engines (GTEs) 20 that supply power to the respective pump 18 for supplying fracking fluid at high pressure and high flow rates to a formation. For example, a GTE 20 may be connected to a respective pump 18 via a reduction transmission connected to a drive shaft, which, in turn, is connected to an input shaft or input flange of a respective reciprocating pump 18. Other types of GTE-to-pump arrangements are contemplated. In some examples, one or more of the GTEs 20 may be a dual-fuel or bi-fuel GTE, for example, capable of being operated using of two or more different types of fuel, such as natural gas and diesel fuel, although other types of fuel are contemplated. For example, a dual-fuel or bi-fuel GTE may be capable of being operated using a first type of fuel, a second type of fuel, and/or a combination of the first type of fuel and the second type of fuel. For example, the fuel may include compressed natural gas (CNG), natural gas, field gas, pipeline gas, methane, propane, butane, and/or liquid fuels, such as, for example, diesel fuel (e.g., #2 Diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, etc. Gaseous fuels may be supplied by CNG bulk vessels, a gas compressor, a liquid natural gas vaporizer, line gas, and/or well-gas produced natural gas. Other types and sources of fuel are contemplated. The one or more GTEs 20 may be operated to provide horsepower to drive via a transmission one or more of the pumps 18 to safely and successfully fracture a formation during a well stimulation project.
Although not shown in
The pumps 18 are driven by the GTEs 20 of the respective hydraulic fracturing units 12 and discharge the slurry (e.g., the fracking fluid including the water, agents, gels, and/or proppants) at high pressure and/or a high flow rates through individual high-pressure discharge lines 26 into two or more high-pressure flow lines 28, sometimes referred to as “missiles,” on the frac manifold 24. The flow from the flow lines 28 is combined at the frac manifold 24, and one or more of the flow lines 28 provide flow communication with a manifold assembly, sometimes referred to as a “goat head.” The manifold assembly delivers the slurry into a wellhead manifold, sometimes referred to as a “zipper manifold” or a “frac manifold.” The wellhead manifold may be configured to selectively divert the slurry to, for example, one or more well heads via operation of one or more valves. Once the fracturing process is ceased or completed, flow returning from the fractured formation discharges into a flowback manifold, and the returned flow may be collected in one or more flowback tanks.
In the example shown in
As shown in
For example, as shown in
In the example shown, the first through fourth hydraulic fracturing units 12a through 12d may make up a first bank 46 of the hydraulic fracturing units 12, and fifth through eighth hydraulic fracturing units 12e through 12h may make up a second bank 48 of the hydraulic fracturing units 12. In some examples, for example, as shown in
In this example manner, the fuel source 22 may supply fuel to the GTEs 20 of the hydraulic fracturing units 12. In some examples, fuel that reaches the end of the first bank 46 of the hydraulic fracturing units 12 remote from the fuel source 22 (e.g., the fourth hydraulic fracturing unit 12d) and/or fuel that reaches the end of the second bank 48 of the hydraulic fracturing units 12 remote from the fuel source 22 (e.g., the eighth hydraulic fracturing unit 12h) may be combined and/or transferred between the first bank 46 and the second bank 48, for example, via a transfer line 50 configured to provide flow communication between the first bank 46 and the second bank 48. For example, unused fuel supplied to either of the first bank 46 or the second bank 48 of hydraulic fracturing units 12 may be passed to the other bank of the two banks.
In some examples, the inlet coupling 40 and/or the outlet coupling 44 may include a flange configured to be secured to another flange of another manifold line and/or a fuel line. For example, the manifold line 32 may be a four-inch schedule 40 steel pipe, and the inlet coupling 40 and/or the outlet coupling 44 may include a four-inch 300 class weld neck flange, although other manifold line types and sizes are contemplated, as well as other coupling types and sizes. In some examples, the inlet coupling 40 may include a quick connect coupling configured to connect the inlet end 34 of the manifold line 32 in a fluid-tight manner with a quick connect coupling (e.g., a complimentary coupling) of an outlet end of another manifold line. In some examples, the outlet coupling 44 may include quick connect coupling configured to connect the outlet end 36 of the manifold line 32 in a fluid-tight manner with a quick connect coupling of an inlet end of yet another manifold line and/or a quick connect coupling of a blocking device configured to prevent flow from the outlet end 36 of the manifold line 32, for example, to effectively prevent flow through the manifold line 32 to another hydraulic fracturing unit 12 of a common hydraulic fracturing system 16. In some examples, the quick connect coupling may include a quarter-turn quick connect (e.g., a twister locking quick connect) or a safety quick coupler (e.g., transfer-loading safety quick coupling), for example, as disclosed herein with respect to
In addition, as shown in
As shown in
As shown in
As shown in
In some examples, the fuel line connection assembly 14 may be configured to facilitate testing for leaks in at least a portion of the fuel delivery system 10 according to some embodiments of the disclosure. For example, as shown in
As shown in
For example, as shown in
For example,
In some examples, once the testing is complete, or in order to cease the testing, the controller 74 may be configured to cause the third valve 70 to change from the open condition to the closed condition, for example, via activation of the third actuator 80, and cause the fourth valve 72 to change from the closed condition to the open condition, for example, via activation of the fourth actuator 82, to thereby close-off the pressure source 68 and/or bleed any remaining excess pressure between the pressure source 68 and the third valve 70. The controller 74 may also cause the second valve 64 to return to the open condition, for example, via activation of the second actuator 78, and/or ensure that the first valve 54 remains in the open condition (see
In the example shown, the first through fourth hydraulic fracturing units 12a through 12d may make up a first bank 46 of the hydraulic fracturing units 12, and fifth through eighth hydraulic fracturing units 12e through 12h may make up a second bank 48 of the hydraulic fracturing units 12. In some examples, for example as shown in
In some examples, the configuration of the fuel line connection assemblies 14 may facilitate arranging the hydraulic fracturing units in (1) a “daisy-chain” arrangement, in which fuel passes through each of manifold lines 32 in a series-type arrangement, (2) a “hub and spoke” arrangement, in which an inlet end of each of the manifold lines 32 is connected to a fuel line from a fuel hub or the fuel source and flow from an outlet end is prevented, or (3) a “combination” arrangement, such as the example shown in
The example method 800, at 802, may include causing a first valve to be in an open condition. The first valve may be configured to facilitate flow communication or prevent flow communication between a fuel source and a GTE of the plurality of GTEs. For example, a controller may be configured to communicate with an actuator to activate the actuator to cause the first valve to be in the open condition, so that flow communication exists between the GTE and the fuel source.
At 804, the example method 800 may further include causing a second valve to be in a closed condition. The second valve may be configured to facilitate flow communication or prevent flow communication between a filter configured to filter one or more of particulates or liquids from fuel and the GTE. For example, the controller may be configured to communicate with an actuator to activate the actuator to cause the second valve to be in the closed condition, so that flow communication between the filter and the GTE is prevented. This may effectively isolate or close-off the GTE from flow communication with the fuel delivery system and/or the remainder fuel line connection assembly (e.g., with the distribution line).
At 806, the example method 800 may also include causing a third valve to be in an open condition. The third valve may be configured to facilitate flow communication or prevent flow communication between a pressure source and the filter. For example, the controller may be configured to communicate with an actuator to activate the actuator to cause the third valve to be in the open condition, so that flow communication exists between the pressure source and the filter.
The example method 800, at 808, may further include increasing pressure via the pressure source in the at least a portion of the fuel delivery system. For example, the controller may be configured to cause the pressure source to increase pressure (or at least attempt to increase pressure) in the fuel line connection assembly and/or the fuel delivery system, for example, to determine whether the fuel line connection assembly and/or the fuel line delivery system is sufficiently leak-tight for pressure to increase to, and/or hold, a predetermined or threshold pressure for a period of time. In some examples, increasing pressure via the pressure source may include activating a compressor in flow communication with the portion of the fuel line connection assembly and/or the fuel delivery system, and/or opening a valve of a pressurized cylinder in flow communication with the portion of the fuel line connection assembly and/or the fuel delivery system.
The example method 800, at 810, may also include initiating a timer. In some examples, the controller may be configured to initiate a timer and cause the increase (or attempt to increase) the pressure until a predetermined time has elapsed.
At 812, the example method 800 may also include monitoring a signal indicative of pressure in the at least a portion of the fuel delivery system. For example, a pressure sensor in flow communication with the fuel line connection system and/or the fuel delivery system may generate one or more signals indicative of the pressure in the assembly and/or system, for example, and the controller may receive the one or more signals and determine whether the pressure increases to the predetermined or threshold pressure.
At 814, the example method 800 may further include, based at least in part on the signal, determining whether the at least a portion of the fuel delivery system has a leak. For example, the controller may receive the one or more signals from the sensor indicative of pressure in the fuel line connection assembly and/or the fuel delivery system and, based at least in part on the one or more signals, determine whether a leak exists in the fuel line connection assembly and/or the fuel delivery system. In some examples, this determination may include comparing the pressure in at least a portion of the fuel delivery system at the end of the predetermined time to a predetermined pressure, and determining whether the portion of the fuel delivery system has a leak when the pressure in the portion of the fuel delivery system is less than the predetermined pressure, or the portion of the fuel delivery system does not have a leak when the pressure in the at least a portion of the fuel delivery system is at least the predetermined pressure by the end of the predetermined time. In some examples, if it has been determined that the pressure in the fuel delivery system has reached the predetermined pressure, for example, prior to the end of the predetermined time, the method may include initiating the timer, waiting for a second predetermined time to elapse, and comparing the pressure in the portion of the fuel delivery system at the second predetermined time to the predetermined pressure. If the pressure in the fuel delivery system remains above the predetermined pressure at the end of the second predetermined time, the controller may be configured to determine that the fuel line connection assembly and/or the fuel delivery system does not have a leak.
The example method 800, at 816, if it has been determined that the fuel delivery system has a leak, may also include generating a signal indicative of the leak. For example, if the controller determines that the fuel line connection assembly and/or the fuel delivery system has a leak, the controller may generate an alarm signal indicative of the leak that may be received by personnel at the hydraulic fracturing site, so that remedial measures may be performed. In some examples, the method may be configured to sequentially isolate fuel line connection assemblies associated with respective hydraulic fracturing units and perform a pressure test on each one of the fuel line connection assemblies associated with each of the hydraulic fracturing units. For example, the controller may be configured to cause valves of fuel line connection assemblies to be in a closed condition, so that a fuel line connection assembly being tested can be isolated and the pressure test performed for the isolated fuel line connection assembly. This process may be repeated for one or more of the other fuel line connection assemblies associated with respective hydraulic fracturing units.
The example method 800, at 818, if no leak has been determined at 814, may further include ceasing the pressure testing, for example, after one or more of the predetermined times have elapsed and no leaks have been detected by the controller. In addition, once a leak has been detected, for example, at 814, the method 800 may also include ceasing the pressure testing. This may include isolating the pressure source from the fuel line connection assembly and/or the fuel delivery system. In some examples, this may include ceasing operation of a compressor, closing a valve on a pressure source, such as a high pressure tank, etc.
At 820, the example method 800 may include causing a fourth valve to be in an open condition. The fourth valve may be configured to release pressure in the at least a portion of the fuel delivery system, such as the fuel line connection assembly and/or the test line. The controller may communicate with an actuator associated with the fourth valve to cause the fourth valve to be in the open condition, thereby releasing pressure increased during the pressure testing from the fuel line connection assembly and/or the fuel delivery system.
At 822, the example method 800 may further include causing the third valve to be in the closed condition and causing the second valve to be in the open condition. For example, the controller may be configured to communicate with actuators associated with the second and third valves and cause the second valve to be in the open condition so that fuel from the fuel source may be supplied to the GTE and cause the third valve to be in the closed condition to prevent fuel from passing to the test line and/or the pressure source during operation of the GTE.
In some examples, once a pressure test has been initiated, the first valve will be caused to be in the open condition for example, to allow pressure from the pressure source to fill at least a portion of the fuel delivery system (e.g., the entire fuel delivery system, including one or more fuel lines from the fuel source). The second valve will be caused to be in the closed condition and isolate the GTE from the fuel delivery system. The third valve will be caused to be in the open condition to allow pressure from the pressure source the fill the fuel delivery system and build pressure therein. The fourth valve will be caused to be in the closed condition to allow pressure to build (or attempt to build) in the fuel delivery system.
Once the first, second, third, and fourth valves are in the above-noted conditions, the pressure source will be activated to build (or attempt to build) pressure in the fuel delivery system. The sensors will generate signals indicative of the pressure in the fuel delivery system, which will be received by the controller. The controller will initiate a timer, and the pressure source will attempt to increase the pressure in the fuel delivery system to a predetermined threshold pressure for a predetermined time. The threshold pressure and/or the predetermined time may be set by an operator and/or automatically controlled via the controller according to a program. If the pressure source is unable to cause the pressure in the fuel delivery system to achieve the pressure threshold before the predetermined time has elapsed, the controller may cause the pressure source to discontinue attempting to increase the pressure in the fuel delivery system (e.g., the controller will cease operation of a compressor serving as the pressure source). The controller may also generate a signal and/or an alarm to notify an operator of a possible leak in the fuel delivery system.
If, however, the pressure in the fuel delivery system reaches the predetermine threshold pressure, the controller may cause the pressure source to discontinue attempting to increase the pressure in the fuel delivery system. The controller may also initiate a new timer and monitor the pressure in the fuel delivery system for a second predetermined time (e.g., five minutes). If the pressure in the fuel delivery system remains stable for the duration of the second predetermined time, the controller may determine that no leaks are present in the fuel delivery system, and the pressure test may be deemed successful. If the pressure drops, for example, greater than a predetermined rate (e.g., greater than 5% during the second predetermined time), the controller may be configured to generate a signal and/or an alarm to notify an operator of a possible leak in the fuel delivery system.
At the end of the pressure test, the controller (and/or the operator) may bleed pressure from the fuel delivery system, causing the fourth valve to change to the open condition to vent the pressure from the fuel delivery system. After pressure has been bled from the fuel delivery system, the controller may cause the first, second, third, and fourth valves to change to the condition consistent with operation of the hydraulic fracturing system, for example, such that the first valve is in the open condition to allow fuel to flow from the pressure source to the filter, the second valve is in the open condition to allow fuel to flow from the filter to the GTE, such that the third valve is in the closed condition to prevent fuel from flowing to the pressure source or to the fourth valve, and such that the fourth valve is in the closed condition, so that if another pressure test is commenced, the fourth valve will prevent bleeding of the pressure from the pressure source.
It should be appreciated that subject matter presented herein may be implemented as a computer process, a computer-controlled apparatus, a computing system, or an article of manufacture, such as a computer-readable storage medium. While the subject matter described herein is presented in the general context of program modules that execute on one or more computing devices, those skilled in the art will recognize that other implementations may be performed in combination with other types of program modules. Generally, program modules include routines, programs, components, data structures, and other types of structures that perform particular tasks or implement particular abstract data types.
Those skilled in the art will also appreciate that aspects of the subject matter described herein may be practiced on or in conjunction with other computer system configurations beyond those described herein, including multiprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, handheld computers, mobile telephone devices, tablet computing devices, special-purposed hardware devices, network appliances, and the like.
In the example system 100 shown in in
For example, as shown in
As shown in
As shown in
For example, as shown
In some examples, the communications cable 104 may include a first end configured to be connected to a first unit interface connected to a respective hydraulic fracturing unit 12. The length of communications cable 104 may also include a second end configured to be connected to a data center interface of the data center 106 or a second unit interface connected to another one of the hydraulic fracturing units 12. One or more of the first end or the second end of the length of communications cable 104 may include or be provided with a quick connecter configured to be connected to one or more of the first unit interface or the data center interface, for example, as discussed herein with respect to
In some examples, the communications cable assembly 102 may also include a communications cable storage apparatus connected to the respective hydraulic fracturing unit 12 and configured to store the length of communications cable 104 when not in use and to facilitate deployment of at least a portion of the length of communications cable 104 for connection to the data center 106 or the another hydraulic fracturing unit 12. The communications cable storage apparatus may include a cable reel configured to be connected to the hydraulic fracturing unit 12 and/or a cable support configured to be connected to the hydraulic fracturing unit 12 and to receive windings of at least a portion of the length of communications cable 104.
As shown in
In some examples, one or more of the power cable assemblies 110 may also include a power cable storage apparatus configured to be connected to the respective hydraulic fracturing unit 12. The power cable storage apparatus, in some examples, may be configured to store the length of power cable 112 when not in use and to facilitate deployment of at least a portion of the length of power cable 112 for use.
As shown in
As shown in
In the example shown in
In the example shown in
For example, a first main fuel line 86a may provide flow communication from the fuel source 22 to the first fuel hub 118a, and the second main fuel line 86b may provide flow communication from the fuel source 22 to the second fuel hub 118b. The first and second fuel hubs 118a and 118b may respectively supply fuel to each of the manifold lines 32 of the respective hydraulic fracturing units 12 of each of the first and second banks 46 and 48 of the hydraulic fracturing units 12. The first communications hub 120a may be communicatively connected to each of the hydraulic fracturing units 12 of the first bank 46, and the second communications hub 120b may be communicatively connected to each of the hydraulic fracturing units 12 of the second bank 48, for example, via the communications cable assembly 102 of each of the hydraulic fracturing units 12. In some examples, one or more of the first communications hub 120a or the second communications hub 120b may be communicatively connected to the data center 104, for example, as shown in
As shown in
The example system 100 shown in
As shown in
In the example shown in
As shown in
In some examples, the quick connect coupling 144 may facilitate quickly coupling two or more manifold lines 32 to one another, and/or quickly coupling a manifold line 32 to a fuel line from a fuel source, to a fuel hub, and/or to a blocking device configured to prevent the flow of fuel from the outlet end of the manifold line 32. This may facilitate connection and/or disconnection of manifold lines 32 during set-up or break-down of the hydraulic fracturing system 16. In some examples, the quick connect coupling 144 may facilitate such set-up and assembly without the use of tools. In some examples, the quick connect couplings 144 may help prevent improperly coupling two inlets to one another or two outlets to one another, which may prevent unintended problems with the fuel delivery system.
In some examples, the communications coupling 158 may facilitate quickly communicatively coupling two or more devices or machines to one another. This may facilitate connection and/or disconnection of communications cables 104 during set-up or break-down of the hydraulic fracturing system 16. In some examples, the communications coupling 158 may facilitate such set-up and assembly without the use of tools. In some examples, the communications couplings 158 may be configured to have unique communication coupling pairs to prevent coupling the communications cable 104 into an incorrect receptacle, thereby reducing the likelihood of an incorrect rigging and incorrect transfer of data. Other types of communications couplings are contemplated.
In some examples, the power coupling 160 may facilitate quickly electrically coupling two or more devices or machines to one another. This may facilitate connection and/or disconnection of power cables 112 during set-up or break-down of the hydraulic fracturing system 16. In some examples, the power coupling 160 may facilitate such set-up and assembly without the use of tools.
Having now described some illustrative embodiments of the invention, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, having been presented by way of example only. Numerous modifications and other embodiments are within the scope of one of ordinary skill in the art and are contemplated as falling within the scope of the invention. In particular, although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. Those skilled in the art should appreciate that the parameters and configurations described herein are exemplary and that actual parameters and/or configurations will depend on the specific application in which the systems and techniques of the invention are used. Those skilled in the art should also recognize or be able to ascertain, using no more than routine experimentation, equivalents to the specific embodiments of the invention. It is, therefore, to be understood that the embodiments described herein are presented by way of example only and that, within the scope of any appended claims and equivalents thereto, the invention may be practiced other than as specifically described.
This application is a divisional of U.S. Non-Provisional application Ser. No. 15/929,708, filed May 18, 2020, titled “FUEL, COMMUNICATIONS, AND POWER CONNECTION SYSTEMS AND RELATED METHODS,” which claims priority to and the benefit of U.S. Provisional Application No. 62/900,100, filed Sep. 13, 2019, titled “ON BOARDING HOSES AND ELECTRICAL CONNECTIONS,” U.S. Provisional Application No. 62/900,112, filed Sep. 13, 2019, titled “FUEL LINE CONNECTION SYSTEM AND METHODS FOR SAME,” and U.S. Provisional Application No. 62/704,401, filed May 8, 2020, titled “FUEL, COMMUNICATIONS, AND POWER CONNECTION SYSTEMS AND RELATED METHODS,” the entire disclosures of all of which are incorporated herein by reference.
Furthermore, the scope of the present disclosure shall be construed to cover various modifications, combinations, additions, alterations, etc., above and to the above-described embodiments, which shall be considered to be within the scope of this disclosure. Accordingly, various features and characteristics as discussed herein may be selectively interchanged and applied to other illustrated and non-illustrated embodiment, and numerous variations, modifications, and additions further can be made thereto without departing from the spirit and scope of the present invention as set forth in the appended claims.
This application is a divisional of U.S. Non-Provisional application Ser. No. 15/929,708, filed May 18, 2020, titled “FUEL, COMMUNICATIONS, AND POWER CONNECTION SYSTEMS AND RELATED METHODS,” which claims priority to and the benefit of U.S. Provisional Application No. 62/900,100, filed Sep. 13, 2019, titled “ON BOARDING HOSES AND ELECTRICAL CONNECTIONS,” U.S. Provisional Application No. 62/900,112, filed Sep. 13, 2019, titled “FUEL LINE CONNECTION SYSTEM AND METHODS FOR SAME,” and U.S. Provisional Application No. 62/704,401, filed May 8, 2020, titled “FUEL, COMMUNICATIONS, AND POWER CONNECTION SYSTEMS AND RELATED METHODS,” the entire disclosures of all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2498229 | Adler | Feb 1950 | A |
2535703 | Smith et al. | Dec 1950 | A |
2820341 | Amann | Jan 1958 | A |
2868004 | Runde | Jan 1959 | A |
2940377 | Darnell et al. | Jun 1960 | A |
2947141 | Russ | Aug 1960 | A |
3068796 | Fluger et al. | Dec 1962 | A |
3191517 | Solzman | Jun 1965 | A |
3257031 | Dietz | Jun 1966 | A |
3274768 | Klein | Sep 1966 | A |
3378074 | Kiel | Apr 1968 | A |
3382671 | Ehni, III | May 1968 | A |
3463612 | Whitsel | Aug 1969 | A |
3550696 | Kenneday | Dec 1970 | A |
3586459 | Zerlauth | Jun 1971 | A |
3632222 | Cronstedt | Jan 1972 | A |
3656582 | Alcock | Apr 1972 | A |
3739872 | McNair | Jun 1973 | A |
3759063 | Bendall | Sep 1973 | A |
3765173 | Harris | Oct 1973 | A |
3771916 | Flanigan et al. | Nov 1973 | A |
3773438 | Hall et al. | Nov 1973 | A |
3786835 | Finger | Jan 1974 | A |
3791682 | Mitchell | Feb 1974 | A |
3796045 | Foster | Mar 1974 | A |
3814549 | Cronstedt | Jun 1974 | A |
3820922 | Buse et al. | Jun 1974 | A |
3963372 | McLain et al. | Jun 1976 | A |
4010613 | McInerney | Mar 1977 | A |
4019477 | Overton | Apr 1977 | A |
4031407 | Reed | Jun 1977 | A |
4059045 | McClain | Nov 1977 | A |
4086976 | Holm et al. | May 1978 | A |
4117342 | Melley, Jr. | Sep 1978 | A |
4173121 | Yu | Nov 1979 | A |
1204808 | Reese et al. | May 1980 | A |
4209079 | Marchal et al. | Jun 1980 | A |
4209979 | Woodhouse et al. | Jul 1980 | A |
4222229 | Uram | Sep 1980 | A |
4269569 | Hoover | May 1981 | A |
4311395 | Douthitt et al. | Jan 1982 | A |
1330237 | Battah | May 1982 | A |
4341508 | Rambin, Jr. | Jul 1982 | A |
4357027 | Zeitlow | Nov 1982 | A |
4383478 | Jones | May 1983 | A |
4402504 | Christian | Sep 1983 | A |
4457325 | Green | Jul 1984 | A |
4470771 | Hall et al. | Sep 1984 | A |
4483684 | Black | Nov 1984 | A |
4505650 | Hannett et al. | Mar 1985 | A |
4574880 | Handke | Mar 1986 | A |
1584654 | Crane | Apr 1986 | A |
4672813 | David | Jun 1987 | A |
4754607 | Mackay | Jul 1988 | A |
4782244 | Wakimoto | Nov 1988 | A |
4796777 | Keller | Jan 1989 | A |
4869209 | Young | Sep 1989 | A |
4913625 | Gerlowski | Apr 1990 | A |
4983259 | Duncan | Jan 1991 | A |
4990058 | Eslinger | Feb 1991 | A |
5135361 | Dion | Aug 1992 | A |
5245970 | Iwaszkiewicz et al. | Sep 1993 | A |
5291842 | Sallstrom et al. | Mar 1994 | A |
5362219 | Paul et al. | Nov 1994 | A |
5537813 | Davis et al. | Jul 1996 | A |
5553514 | Walkowc | Sep 1996 | A |
5560195 | Anderson et al. | Oct 1996 | A |
5586444 | Fung | Dec 1996 | A |
5622245 | Reik | Apr 1997 | A |
5626103 | Haws et al. | May 1997 | A |
5651400 | Corts et al. | Jul 1997 | A |
5678460 | Walkowc | Oct 1997 | A |
5717172 | Griffin, Jr. et al. | Feb 1998 | A |
5720598 | de Chizzelle | Feb 1998 | A |
5839888 | Harrison | Nov 1998 | A |
5846062 | Yanagisawa et al. | Dec 1998 | A |
5983962 | Gerardot | Nov 1999 | A |
6041856 | Thrasher et al. | Mar 2000 | A |
6050080 | Horner | Apr 2000 | A |
6067962 | Bartley et al. | May 2000 | A |
6071188 | O'Neill et al. | Jun 2000 | A |
6074170 | Bert et al. | Jun 2000 | A |
6123751 | Nelson et al. | Sep 2000 | A |
6129335 | Yokogi | Oct 2000 | A |
6145318 | Kaplan et al. | Nov 2000 | A |
6230481 | Jahr | May 2001 | B1 |
6279309 | Lawlor, II et al. | Aug 2001 | B1 |
6321860 | Reddoch | Nov 2001 | B1 |
6334746 | Nguyen et al. | Jan 2002 | B1 |
6530224 | Conchieri | Mar 2003 | B1 |
6543395 | Green | Apr 2003 | B2 |
6655922 | Flek | Dec 2003 | B1 |
6765304 | Baten et al. | Jul 2004 | B2 |
6786051 | Kristich et al. | Sep 2004 | B2 |
6851514 | Han et al. | Feb 2005 | B2 |
6859740 | Stephenson et al. | Feb 2005 | B2 |
6901735 | Lohn | Jun 2005 | B2 |
6962057 | Kurokawa et al. | Nov 2005 | B2 |
7007966 | Campion | Mar 2006 | B2 |
7065953 | Kopko | Jun 2006 | B1 |
7143016 | Discenzo et al. | Nov 2006 | B1 |
7222015 | Davis et al. | May 2007 | B2 |
7388303 | Seiver | Jun 2008 | B2 |
7404294 | Sundin | Jul 2008 | B2 |
7442239 | Armstrong et al. | Oct 2008 | B2 |
7545130 | Latham | Jun 2009 | B2 |
7552903 | Dunn et al. | Jun 2009 | B2 |
7563076 | Brunet et al. | Jul 2009 | B2 |
7563413 | Naets et al. | Jul 2009 | B2 |
7594424 | Fazekas | Sep 2009 | B2 |
7614239 | Herzog et al. | Nov 2009 | B2 |
7627416 | Batenburg et al. | Dec 2009 | B2 |
7677316 | Butler et al. | Mar 2010 | B2 |
7721521 | Kunkle et al. | May 2010 | B2 |
7730711 | Kunkle et al. | Jun 2010 | B2 |
7779961 | Matte | Aug 2010 | B2 |
7789452 | Dempsey et al. | Sep 2010 | B2 |
7845413 | Shampine et al. | Dec 2010 | B2 |
7886702 | Jerrell et al. | Feb 2011 | B2 |
7900724 | Promersberger et al. | Mar 2011 | B2 |
7921914 | Bruins et al. | Apr 2011 | B2 |
7938151 | Höckner | May 2011 | B2 |
7980357 | Edwards | Jul 2011 | B2 |
8056635 | Shampine et al. | Nov 2011 | B2 |
8083504 | Williams et al. | Dec 2011 | B2 |
8186334 | Ooyama | May 2012 | B2 |
8196555 | Ikeda et al. | Jun 2012 | B2 |
8202354 | Iijima | Jun 2012 | B2 |
8316936 | Roddy | Nov 2012 | B2 |
8336631 | Shampine et al. | Dec 2012 | B2 |
8414673 | Raje et al. | Apr 2013 | B2 |
8469826 | Brosowske | Jun 2013 | B2 |
8506267 | Gambier et al. | Aug 2013 | B2 |
8575873 | Peterson et al. | Nov 2013 | B2 |
8616005 | Cousino, Sr. et al. | Dec 2013 | B1 |
8621873 | Robertson et al. | Jan 2014 | B2 |
8656990 | Kajaria et al. | Feb 2014 | B2 |
8672606 | Glynn et al. | Mar 2014 | B2 |
8707853 | Dille et al. | Apr 2014 | B1 |
8714253 | Sherwood et al. | May 2014 | B2 |
8757918 | Ramnarain et al. | Jun 2014 | B2 |
8770329 | Spitler | Jul 2014 | B2 |
8784081 | Blume | Jul 2014 | B1 |
8789601 | Broussard et al. | Jul 2014 | B2 |
8794307 | Coquilleau et al. | Aug 2014 | B2 |
8801394 | Anderson | Aug 2014 | B2 |
8851186 | Shampine et al. | Oct 2014 | B2 |
8851441 | Acuna et al. | Oct 2014 | B2 |
8905056 | Kendrick | Dec 2014 | B2 |
8951019 | Hains et al. | Feb 2015 | B2 |
8973560 | Krug | Mar 2015 | B2 |
8997904 | Cryer et al. | Apr 2015 | B2 |
9016383 | Shampine et al. | Apr 2015 | B2 |
9032620 | Frassinelli et al. | May 2015 | B2 |
9057247 | Kumar et al. | Jun 2015 | B2 |
9103193 | Coli et al. | Aug 2015 | B2 |
9121257 | Coli et al. | Sep 2015 | B2 |
9140110 | Coli et al. | Sep 2015 | B2 |
9187982 | Dehring et al. | Nov 2015 | B2 |
9206667 | Khvoshchev et al. | Dec 2015 | B2 |
9212643 | Deliyski | Dec 2015 | B2 |
9222346 | Walls | Dec 2015 | B1 |
9324049 | Thomeer et al. | Apr 2016 | B2 |
9341055 | Weightman et al. | May 2016 | B2 |
9346662 | Van Vliet et al. | May 2016 | B2 |
9366114 | Coli et al. | Jun 2016 | B2 |
9376786 | Numasawa | Jun 2016 | B2 |
9394829 | Cabeen et al. | Jul 2016 | B2 |
9395049 | Vicknair et al. | Jul 2016 | B2 |
9401670 | Minato et al. | Jul 2016 | B2 |
9410410 | Broussard et al. | Aug 2016 | B2 |
9410546 | Jaeger et al. | Aug 2016 | B2 |
9429078 | Crowe et al. | Aug 2016 | B1 |
9488169 | Cochran et al. | Nov 2016 | B2 |
9493997 | Liu et al. | Nov 2016 | B2 |
9512783 | Veilleux et al. | Dec 2016 | B2 |
9534473 | Morris et al. | Jan 2017 | B2 |
9546652 | Yin | Jan 2017 | B2 |
9550501 | Ledbetter | Jan 2017 | B2 |
9556721 | Jang et al. | Jan 2017 | B2 |
9562420 | Morris et al. | Feb 2017 | B2 |
9570945 | Fischer | Feb 2017 | B2 |
9579980 | Cryer et al. | Feb 2017 | B2 |
9587649 | Oehring | Mar 2017 | B2 |
9611728 | Oehring | Apr 2017 | B2 |
9617808 | Liu et al. | Apr 2017 | B2 |
9638101 | Crowe et al. | May 2017 | B1 |
9638194 | Wiegman et al. | May 2017 | B2 |
9650871 | Oehring et al. | May 2017 | B2 |
9656762 | Kamath et al. | May 2017 | B2 |
9689316 | Crom | Jun 2017 | B1 |
9739130 | Young | Aug 2017 | B2 |
9764266 | Carter | Sep 2017 | B1 |
9777748 | Lu et al. | Oct 2017 | B2 |
9803467 | Tang et al. | Oct 2017 | B2 |
9803793 | Davi et al. | Oct 2017 | B2 |
9809308 | Aguilar et al. | Nov 2017 | B2 |
9829002 | Crom | Nov 2017 | B2 |
9840897 | Larson | Dec 2017 | B2 |
9840901 | Oering et al. | Dec 2017 | B2 |
9845730 | Betti et al. | Dec 2017 | B2 |
9850422 | Lestz et al. | Dec 2017 | B2 |
9856131 | Moffitt | Jan 2018 | B1 |
9863279 | Laing et al. | Jan 2018 | B2 |
9869305 | Crowe et al. | Jan 2018 | B1 |
9879609 | Crowe et al. | Jan 2018 | B1 |
9893500 | Oehring et al. | Feb 2018 | B2 |
9893660 | Peterson et al. | Feb 2018 | B2 |
9897003 | Motakef et al. | Feb 2018 | B2 |
9920615 | Zhang et al. | Mar 2018 | B2 |
9945365 | Hernandez et al. | Apr 2018 | B2 |
9964052 | Millican et al. | May 2018 | B2 |
9970278 | Broussard et al. | May 2018 | B2 |
9981840 | Shock | May 2018 | B2 |
9995102 | Dillie et al. | Jun 2018 | B2 |
9995218 | Oehring et al. | Jun 2018 | B2 |
10008880 | Vicknair et al. | Jun 2018 | B2 |
10008912 | Davey et al. | Jun 2018 | B2 |
10018096 | Wallimann et al. | Jul 2018 | B2 |
10020711 | Oehring et al. | Jul 2018 | B2 |
10024123 | Steffenhagen et al. | Jul 2018 | B2 |
10029289 | Wendorski et al. | Jul 2018 | B2 |
10030579 | Austin et al. | Jul 2018 | B2 |
10036238 | Oehring | Jul 2018 | B2 |
10040541 | Wilson et al. | Aug 2018 | B2 |
10060293 | Del Bono | Aug 2018 | B2 |
10060349 | Álvarez et al. | Aug 2018 | B2 |
10077933 | Nelson et al. | Sep 2018 | B2 |
10082137 | Graham et al. | Sep 2018 | B2 |
10094366 | Marica | Oct 2018 | B2 |
10100827 | Devan et al. | Oct 2018 | B2 |
10107084 | Coli et al. | Oct 2018 | B2 |
10107085 | Coli et al. | Oct 2018 | B2 |
10114061 | Frampton et al. | Oct 2018 | B2 |
10119381 | Oehring et al. | Nov 2018 | B2 |
10134257 | Zhang et al. | Nov 2018 | B2 |
10138098 | Sorensen et al. | Nov 2018 | B2 |
10151244 | Giancotti et al. | Dec 2018 | B2 |
10174599 | Shampine et al. | Jan 2019 | B2 |
10184397 | Austin et al. | Jan 2019 | B2 |
10196258 | Kalala et al. | Feb 2019 | B2 |
10221856 | Hernandez et al. | Mar 2019 | B2 |
10227854 | Glass | Mar 2019 | B2 |
10227855 | Coli et al. | Mar 2019 | B2 |
10246984 | Payne et al. | Apr 2019 | B2 |
10247182 | Zhang et al. | Apr 2019 | B2 |
10254732 | Oehring et al. | Apr 2019 | B2 |
10267439 | Pryce et al. | Apr 2019 | B2 |
10280724 | Hinderliter | May 2019 | B2 |
10287943 | Schiltz | May 2019 | B1 |
10288519 | De La Cruz | May 2019 | B2 |
10303190 | Shock | May 2019 | B2 |
10305350 | Johnson et al. | May 2019 | B2 |
10316832 | Byrne | Jun 2019 | B2 |
10317875 | Pandurangan et al. | Jun 2019 | B2 |
10337402 | Austin et al. | Jul 2019 | B2 |
10358035 | Cryer | Jul 2019 | B2 |
10371012 | Davis et al. | Aug 2019 | B2 |
10374485 | Morris et al. | Aug 2019 | B2 |
10378326 | Morris et al. | Aug 2019 | B2 |
10393108 | Chong et al. | Aug 2019 | B2 |
10407990 | Oehring et al. | Sep 2019 | B2 |
10408031 | Oehring et al. | Sep 2019 | B2 |
10415348 | Zhang et al. | Sep 2019 | B2 |
10415557 | Crowe et al. | Sep 2019 | B1 |
10415562 | Kajita et al. | Sep 2019 | B2 |
RE47695 | Case et al. | Nov 2019 | E |
10465689 | Crom | Nov 2019 | B2 |
10478753 | Elms et al. | Nov 2019 | B1 |
10526882 | Oehring et al. | Jan 2020 | B2 |
10563649 | Zhang et al. | Feb 2020 | B2 |
10577910 | Stephenson | Mar 2020 | B2 |
10584645 | Nakagawa et al. | Mar 2020 | B2 |
10590867 | Thomassin et al. | Mar 2020 | B2 |
10598258 | Oehring et al. | Mar 2020 | B2 |
10610842 | Chong | Apr 2020 | B2 |
10662749 | Hill et al. | May 2020 | B1 |
10711787 | Darley | Jul 2020 | B1 |
10738580 | Fischer et al. | Aug 2020 | B1 |
10753153 | Fischer et al. | Aug 2020 | B1 |
10753165 | Fischer et al. | Aug 2020 | B1 |
10760556 | Crom et al. | Sep 2020 | B1 |
10794165 | Fischer et al. | Oct 2020 | B2 |
10794166 | Reckels et al. | Oct 2020 | B2 |
10801311 | Cui et al. | Oct 2020 | B1 |
10815764 | Yeung et al. | Oct 2020 | B1 |
10815978 | Glass | Oct 2020 | B2 |
10830032 | Zhang et al. | Nov 2020 | B1 |
10859203 | Cui et al. | Dec 2020 | B1 |
10864487 | Han et al. | Dec 2020 | B1 |
10865624 | Cui et al. | Dec 2020 | B1 |
10865631 | Zhang et al. | Dec 2020 | B1 |
10870093 | Zhong et al. | Dec 2020 | B1 |
10871045 | Fischer et al. | Dec 2020 | B2 |
10895202 | Yeung et al. | Jan 2021 | B1 |
10907459 | Yeung et al. | Feb 2021 | B1 |
10927774 | Cai et al. | Feb 2021 | B2 |
10954770 | Yeung et al. | Mar 2021 | B1 |
10954855 | Ji et al. | Mar 2021 | B1 |
10961614 | Yeung et al. | Mar 2021 | B1 |
10961908 | Yeung et al. | Mar 2021 | B1 |
10961912 | Yeung et al. | Mar 2021 | B1 |
10961914 | Yeung et al. | Mar 2021 | B1 |
10961993 | Ji et al. | Mar 2021 | B1 |
10892596 | Yeung et al. | Apr 2021 | B2 |
10968837 | Yeung et al. | Apr 2021 | B1 |
10982523 | Hill et al. | Apr 2021 | B1 |
10989019 | Cai et al. | Apr 2021 | B2 |
10989180 | Yeung et al. | Apr 2021 | B2 |
10995564 | Miller et al. | May 2021 | B2 |
11002189 | Yeung et al. | May 2021 | B2 |
11008950 | Ethier et al. | May 2021 | B2 |
11015423 | Yeung et al. | May 2021 | B1 |
11015536 | Yeung et al. | May 2021 | B2 |
11015594 | Yeung et al. | May 2021 | B2 |
11022526 | Yeung et al. | Jun 2021 | B1 |
11028677 | Yeung et al. | Jun 2021 | B1 |
11035214 | Cui et al. | Jun 2021 | B2 |
11047379 | Li et al. | Jun 2021 | B1 |
11053853 | Li et al. | Jul 2021 | B2 |
11060455 | Yeung et al. | Jul 2021 | B1 |
11085281 | Yeung et al. | Aug 2021 | B1 |
11092152 | Yeung et al. | Aug 2021 | B2 |
11098651 | Yeung et al. | Aug 2021 | B1 |
11105250 | Zhang et al. | Aug 2021 | B1 |
11105266 | Zhou et al. | Aug 2021 | B2 |
11109508 | Yeung et al. | Aug 2021 | B1 |
11111768 | Yeung et al. | Sep 2021 | B1 |
11125066 | Yeung et al. | Sep 2021 | B1 |
11125156 | Zhang et al. | Sep 2021 | B2 |
11129295 | Yeung et al. | Sep 2021 | B1 |
11143000 | Li et al. | Oct 2021 | B2 |
11143006 | Zhang et al. | Oct 2021 | B1 |
11149533 | Yeung et al. | Oct 2021 | B1 |
11149726 | Yeung et al. | Oct 2021 | B1 |
11156159 | Yeung et al. | Oct 2021 | B1 |
11174716 | Yeung et al. | Nov 2021 | B1 |
11193360 | Yeung et al. | Dec 2021 | B1 |
11193361 | Yeung et al. | Dec 2021 | B1 |
11205880 | Yeung et al. | Dec 2021 | B1 |
11205881 | Yeung et al. | Dec 2021 | B2 |
11208879 | Yeung et al. | Dec 2021 | B1 |
11208953 | Yeung et al. | Dec 2021 | B1 |
11220895 | Yeung et al. | Jan 2022 | B1 |
11236739 | Yeung et al. | Feb 2022 | B2 |
11242737 | Zhang et al. | Feb 2022 | B2 |
11243509 | Cai et al. | Feb 2022 | B2 |
11251650 | Liu et al. | Feb 2022 | B1 |
11268346 | Yeung et al. | Mar 2022 | B2 |
11346200 | Cai et al. | May 2022 | B2 |
11401927 | Li et al. | Aug 2022 | B2 |
20020126922 | Cheng et al. | Sep 2002 | A1 |
20030061819 | Kuroki et al. | Apr 2003 | A1 |
20040016245 | Pierson | Jan 2004 | A1 |
20040074238 | Wantanabe et al. | Apr 2004 | A1 |
20040076526 | Fukano et al. | Apr 2004 | A1 |
20040187950 | Cohen et al. | Sep 2004 | A1 |
20040219040 | Kugelev et al. | Nov 2004 | A1 |
20050051322 | Speer | Mar 2005 | A1 |
20050056081 | Gocho | Mar 2005 | A1 |
20050139286 | Poulter | Jun 2005 | A1 |
20050196298 | Manning | Sep 2005 | A1 |
20050226754 | Orr et al. | Oct 2005 | A1 |
20050274134 | Ryu et al. | Dec 2005 | A1 |
20060061091 | Osterloh | Mar 2006 | A1 |
20060062914 | Garg et al. | Mar 2006 | A1 |
20060196251 | Richey | Sep 2006 | A1 |
20060211356 | Grassman | Sep 2006 | A1 |
20060260331 | Andreychuk | Nov 2006 | A1 |
20060272333 | Sundin | Dec 2006 | A1 |
20070029090 | Andreychuk et al. | Feb 2007 | A1 |
20070066406 | Keller et al. | Mar 2007 | A1 |
20070107981 | Sicotte | May 2007 | A1 |
20070125544 | Robinson et al. | Jun 2007 | A1 |
20070169543 | Fazekas | Jul 2007 | A1 |
20070181212 | Fell | Aug 2007 | A1 |
20070277982 | Shampine et al. | Dec 2007 | A1 |
20070295569 | Manzoor et al. | Dec 2007 | A1 |
20080006089 | Adnan et al. | Jan 2008 | A1 |
20080098891 | Feher | May 2008 | A1 |
20080161974 | Alston | Jul 2008 | A1 |
20080264625 | Ochoa | Oct 2008 | A1 |
20080264649 | Crawford | Oct 2008 | A1 |
20090064685 | Busekros et al. | Mar 2009 | A1 |
20090068031 | Gambier et al. | Mar 2009 | A1 |
20090092510 | Williams et al. | Apr 2009 | A1 |
20090124191 | Van Becelaere et al. | May 2009 | A1 |
20090178412 | Spytek | Jul 2009 | A1 |
20090249794 | Wilkes et al. | Oct 2009 | A1 |
20090252616 | Brunet et al. | Oct 2009 | A1 |
20090308602 | Bruins et al. | Dec 2009 | A1 |
20100019626 | Stout et al. | Jan 2010 | A1 |
20100071899 | Coquilleau et al. | Mar 2010 | A1 |
20100218508 | Brown et al. | Sep 2010 | A1 |
20100300683 | Looper et al. | Dec 2010 | A1 |
20100310384 | Stephenson et al. | Dec 2010 | A1 |
20110052423 | Gambier et al. | Mar 2011 | A1 |
20110054704 | Karpman et al. | Mar 2011 | A1 |
20110085924 | Shampine et al. | Apr 2011 | A1 |
20110146244 | Farman et al. | Jun 2011 | A1 |
20110146246 | Farman et al. | Jun 2011 | A1 |
20110173991 | Dean | Jul 2011 | A1 |
20110197988 | Van Vliet et al. | Aug 2011 | A1 |
20110241888 | Lu et al. | Oct 2011 | A1 |
20110265443 | Ansari | Nov 2011 | A1 |
20110272158 | Neal | Nov 2011 | A1 |
20120048242 | Surnilla et al. | Mar 2012 | A1 |
20120085541 | Love et al. | Apr 2012 | A1 |
20120137699 | Montagne et al. | Jun 2012 | A1 |
20120179444 | Ganguly et al. | Jul 2012 | A1 |
20120192542 | Chillar et al. | Aug 2012 | A1 |
20120199001 | Chillar et al. | Aug 2012 | A1 |
20120204627 | Anderl et al. | Aug 2012 | A1 |
20120255734 | Coli et al. | Oct 2012 | A1 |
20120310509 | Pardo et al. | Dec 2012 | A1 |
20120324903 | Dewis et al. | Dec 2012 | A1 |
20130068307 | Hains et al. | Mar 2013 | A1 |
20130087045 | Sullivan et al. | Apr 2013 | A1 |
20130087945 | Kusters et al. | Apr 2013 | A1 |
20130134702 | Boraas et al. | May 2013 | A1 |
20130189915 | Hazard | Jul 2013 | A1 |
20130255953 | Tudor | Oct 2013 | A1 |
20130259707 | Yin | Oct 2013 | A1 |
20130284455 | Kajaria et al. | Oct 2013 | A1 |
20130300341 | Gillette | Nov 2013 | A1 |
20130306322 | Sanborn | Nov 2013 | A1 |
20140010671 | Cryer et al. | Jan 2014 | A1 |
20140013768 | Laing et al. | Jan 2014 | A1 |
20140032082 | Gehrke et al. | Jan 2014 | A1 |
20140044517 | Saha et al. | Feb 2014 | A1 |
20140048253 | Andreychuk | Feb 2014 | A1 |
20140090729 | Coulter et al. | Apr 2014 | A1 |
20140090742 | Coskrey et al. | Apr 2014 | A1 |
20140094105 | Lundh et al. | Apr 2014 | A1 |
20140095114 | Thomeer et al. | Apr 2014 | A1 |
20140095554 | Thomeer et al. | Apr 2014 | A1 |
20140123621 | Driessens et al. | May 2014 | A1 |
20140130422 | Laing et al. | May 2014 | A1 |
20140138079 | Broussard et al. | May 2014 | A1 |
20140144641 | Chandler | May 2014 | A1 |
20140147291 | Burnette | May 2014 | A1 |
20140158345 | Jang et al. | Jun 2014 | A1 |
20140196459 | Futa et al. | Jul 2014 | A1 |
20140216736 | Leugemors et al. | Aug 2014 | A1 |
20140219824 | Burnette | Aug 2014 | A1 |
20140250845 | Jackson et al. | Sep 2014 | A1 |
20140251623 | Lestz et al. | Sep 2014 | A1 |
20140277772 | Lopez et al. | Sep 2014 | A1 |
20140290266 | Veilleux, Jr. et al. | Oct 2014 | A1 |
20140318638 | Harwood et al. | Oct 2014 | A1 |
20150027730 | Hall et al. | Jan 2015 | A1 |
20150078924 | Zhang et al. | Mar 2015 | A1 |
20150101344 | Jarrier et al. | Apr 2015 | A1 |
20150114652 | Lestz et al. | Apr 2015 | A1 |
20150129210 | Chong et al. | May 2015 | A1 |
20150135659 | Jarrier et al. | May 2015 | A1 |
20150159553 | Kippel et al. | Jun 2015 | A1 |
20150192117 | Bridges | Jul 2015 | A1 |
20150204148 | Liu et al. | Jul 2015 | A1 |
20150204322 | Iund et al. | Jul 2015 | A1 |
20150211512 | Wiegman et al. | Jul 2015 | A1 |
20150214816 | Raad | Jul 2015 | A1 |
20150217672 | Shampine et al. | Aug 2015 | A1 |
20150226140 | Zhang et al. | Aug 2015 | A1 |
20150252661 | Glass | Sep 2015 | A1 |
20150275891 | Chong et al. | Oct 2015 | A1 |
20150337730 | Kupiszewski et al. | Nov 2015 | A1 |
20150340864 | Compton | Nov 2015 | A1 |
20150345385 | Santini | Dec 2015 | A1 |
20150369351 | Hermann et al. | Dec 2015 | A1 |
20160032703 | Broussard et al. | Feb 2016 | A1 |
20160032836 | Hawkinson et al. | Feb 2016 | A1 |
20160102581 | Del Bono | Apr 2016 | A1 |
20160105022 | Oehring et al. | Apr 2016 | A1 |
20160108713 | Dunaeva et al. | Apr 2016 | A1 |
20160168979 | Zhang et al. | Jun 2016 | A1 |
20160177675 | Morris et al. | Jun 2016 | A1 |
20160177945 | Byrne et al. | Jun 2016 | A1 |
20160186671 | Austin et al. | Jun 2016 | A1 |
20160195082 | Wiegman et al. | Jul 2016 | A1 |
20160215774 | Oklejas et al. | Jul 2016 | A1 |
20160230525 | Lestz et al. | Aug 2016 | A1 |
20160244314 | Van Vliet et al. | Aug 2016 | A1 |
20160248230 | Tawy et al. | Aug 2016 | A1 |
20160253634 | Thomeer et al. | Sep 2016 | A1 |
20160258267 | Payne et al. | Sep 2016 | A1 |
20160273328 | Oehring | Sep 2016 | A1 |
20160273346 | Tang et al. | Sep 2016 | A1 |
20160290114 | Oehring et al. | Oct 2016 | A1 |
20160319650 | Oehring et al. | Nov 2016 | A1 |
20160326845 | Djikpesse et al. | Nov 2016 | A1 |
20160348479 | Oehring et al. | Dec 2016 | A1 |
20160369609 | Morris et al. | Dec 2016 | A1 |
20170009905 | Arnold | Jan 2017 | A1 |
20170016433 | Chong et al. | Jan 2017 | A1 |
20170030177 | Oehring et al. | Feb 2017 | A1 |
20170038137 | Turney | Feb 2017 | A1 |
20170045055 | Hoefel et al. | Feb 2017 | A1 |
20170074074 | Joseph et al. | Mar 2017 | A1 |
20170074076 | Joseph et al. | Mar 2017 | A1 |
20170074089 | Agarwal et al. | Mar 2017 | A1 |
20170082110 | Lammers | Mar 2017 | A1 |
20170089189 | Norris et al. | Mar 2017 | A1 |
20170114613 | Lecerf et al. | Apr 2017 | A1 |
20170114625 | Norris et al. | Apr 2017 | A1 |
20170122310 | Ladron de Guevara | May 2017 | A1 |
20170131174 | Enev | May 2017 | A1 |
20170145918 | Oehring et al. | May 2017 | A1 |
20170191350 | Johns et al. | Jul 2017 | A1 |
20170218727 | Oehring et al. | Aug 2017 | A1 |
20170226839 | Broussard et al. | Aug 2017 | A1 |
20170226998 | Zhang et al. | Aug 2017 | A1 |
20170227002 | Mikulski et al. | Aug 2017 | A1 |
20170233103 | Teicholz et al. | Aug 2017 | A1 |
20170234165 | Kersey et al. | Aug 2017 | A1 |
20170234308 | Buckley | Aug 2017 | A1 |
20170241336 | Jones et al. | Aug 2017 | A1 |
20170248034 | Dzieciol et al. | Aug 2017 | A1 |
20170248308 | Makarychev-Mikhailov et al. | Aug 2017 | A1 |
20170275149 | Schmidt | Sep 2017 | A1 |
20170288400 | Williams | Oct 2017 | A1 |
20170292409 | Aguilar et al. | Oct 2017 | A1 |
20170302135 | Cory | Oct 2017 | A1 |
20170305736 | Haile et al. | Oct 2017 | A1 |
20170306847 | Suciu et al. | Oct 2017 | A1 |
20170322086 | Luharuka | Nov 2017 | A1 |
20170333086 | Jackson | Nov 2017 | A1 |
20170334448 | Schwunk | Nov 2017 | A1 |
20170335842 | Robinson et al. | Nov 2017 | A1 |
20170350471 | Steidl et al. | Dec 2017 | A1 |
20170370199 | Witkowski et al. | Dec 2017 | A1 |
20170370480 | Witkowski et al. | Dec 2017 | A1 |
20180034280 | Pedersen | Feb 2018 | A1 |
20180038328 | Louven et al. | Feb 2018 | A1 |
20180041093 | Miranda | Feb 2018 | A1 |
20180045202 | Crom | Feb 2018 | A1 |
20180038216 | Zhang et al. | Mar 2018 | A1 |
20180058171 | Roesner et al. | Mar 2018 | A1 |
20180087499 | Zhang et al. | Mar 2018 | A1 |
20180087996 | De La Cruz | Mar 2018 | A1 |
20180156210 | Oehring et al. | Jun 2018 | A1 |
20180172294 | Owen | Jun 2018 | A1 |
20180183219 | Oehring et al. | Jun 2018 | A1 |
20180186442 | Maier | Jul 2018 | A1 |
20180187662 | Hill et al. | Jul 2018 | A1 |
20180209415 | Zhang et al. | Jul 2018 | A1 |
20180223640 | Keihany et al. | Aug 2018 | A1 |
20180224044 | Penney | Aug 2018 | A1 |
20180229998 | Shock | Aug 2018 | A1 |
20180258746 | Broussard et al. | Sep 2018 | A1 |
20180266412 | Stokkevag et al. | Sep 2018 | A1 |
20180278124 | Oehring et al. | Sep 2018 | A1 |
20180283102 | Cook | Oct 2018 | A1 |
20180283618 | Cook | Oct 2018 | A1 |
20180284817 | Cook et al. | Oct 2018 | A1 |
20180290877 | Shock | Oct 2018 | A1 |
20180291781 | Pedrini | Oct 2018 | A1 |
20180298731 | Bishop | Oct 2018 | A1 |
20180298735 | Conrad | Oct 2018 | A1 |
20180307255 | Bishop | Oct 2018 | A1 |
20180313456 | Bayyouk et al. | Nov 2018 | A1 |
20180328157 | Bishop | Nov 2018 | A1 |
20180334893 | Oehring | Nov 2018 | A1 |
20180363435 | Coli et al. | Dec 2018 | A1 |
20180363436 | Coli et al. | Dec 2018 | A1 |
20180363437 | Coli et al. | Dec 2018 | A1 |
20180363438 | Coli et al. | Dec 2018 | A1 |
20190003272 | Morris et al. | Jan 2019 | A1 |
20190003329 | Morris et al. | Jan 2019 | A1 |
20190010793 | Hinderliter | Jan 2019 | A1 |
20190011051 | Yeung | Jan 2019 | A1 |
20190048993 | Akiyama et al. | Feb 2019 | A1 |
20190063263 | Davis et al. | Feb 2019 | A1 |
20190063341 | Davis | Feb 2019 | A1 |
20190067991 | Davis et al. | Feb 2019 | A1 |
20190071992 | Feng | Mar 2019 | A1 |
20190072005 | Fisher et al. | Mar 2019 | A1 |
20190078471 | Braglia et al. | Mar 2019 | A1 |
20190091619 | Huang | Mar 2019 | A1 |
20190106316 | Van Vliet et al. | Apr 2019 | A1 |
20190106970 | Oehring | Apr 2019 | A1 |
20190112908 | Coli et al. | Apr 2019 | A1 |
20190112910 | Oehring et al. | Apr 2019 | A1 |
20190119096 | Haile et al. | Apr 2019 | A1 |
20190120024 | Oehring et al. | Apr 2019 | A1 |
20190120031 | Gilje | Apr 2019 | A1 |
20190120134 | Goleczka et al. | Apr 2019 | A1 |
20190128247 | Douglas, III | May 2019 | A1 |
20190128288 | Konada et al. | May 2019 | A1 |
20190131607 | Gillette | May 2019 | A1 |
20190136677 | Shampine et al. | May 2019 | A1 |
20190153843 | Headrick et al. | May 2019 | A1 |
20190153938 | Hammoud | May 2019 | A1 |
20190154020 | Glass | May 2019 | A1 |
20190155318 | Meunier | May 2019 | A1 |
20190264667 | Byrne | May 2019 | A1 |
20190178234 | Beisel | Jun 2019 | A1 |
20190178235 | Coskrey et al. | Jun 2019 | A1 |
20190185312 | Bush et al. | Jun 2019 | A1 |
20190203572 | Morris et al. | Jul 2019 | A1 |
20190204021 | Morris et al. | Jul 2019 | A1 |
20190211661 | Reckles et al. | Jul 2019 | A1 |
20190211814 | Weightman et al. | Jul 2019 | A1 |
20190217258 | Bishop | Jul 2019 | A1 |
20190226317 | Payne et al. | Jul 2019 | A1 |
20190245348 | Hinderliter et al. | Aug 2019 | A1 |
20190249652 | Stephenson et al. | Aug 2019 | A1 |
20190249754 | Oehring et al. | Aug 2019 | A1 |
20190257297 | Botting et al. | Aug 2019 | A1 |
20190277279 | Byrne et al. | Sep 2019 | A1 |
20190277295 | Clyburn et al. | Sep 2019 | A1 |
20190309585 | Miller et al. | Oct 2019 | A1 |
20190316447 | Oehring et al. | Oct 2019 | A1 |
20190316456 | Beisel et al. | Oct 2019 | A1 |
20190323337 | Glass et al. | Oct 2019 | A1 |
20190330923 | Gable et al. | Oct 2019 | A1 |
20190331117 | Gable et al. | Oct 2019 | A1 |
20190337392 | Joshi et al. | Nov 2019 | A1 |
20190338762 | Curry et al. | Nov 2019 | A1 |
20190345920 | Surjaatmadja et al. | Nov 2019 | A1 |
20190353103 | Roberge | Nov 2019 | A1 |
20190356199 | Morris et al. | Nov 2019 | A1 |
20190376449 | Carrell | Dec 2019 | A1 |
20190383123 | Hinderliter | Dec 2019 | A1 |
20200003205 | Stokkevåg et al. | Jan 2020 | A1 |
20200011165 | George et al. | Jan 2020 | A1 |
20200040878 | Morris | Feb 2020 | A1 |
20200049136 | Stephenson | Feb 2020 | A1 |
20200049153 | Headrick et al. | Feb 2020 | A1 |
20200071998 | Oehring et al. | Mar 2020 | A1 |
20200072201 | Marica | Mar 2020 | A1 |
20200088202 | Sigmar et al. | Mar 2020 | A1 |
20200095854 | Hinderliter | Mar 2020 | A1 |
20200109610 | Husoy et al. | Apr 2020 | A1 |
20200132058 | Mollatt | Apr 2020 | A1 |
20200141219 | Oehring et al. | May 2020 | A1 |
20200141907 | Meck et al. | May 2020 | A1 |
20200166026 | Marica | May 2020 | A1 |
20200206704 | Chong | Jul 2020 | A1 |
20200208733 | Kim | Jul 2020 | A1 |
20200223648 | Herman et al. | Jul 2020 | A1 |
20200224645 | Buckley | Jul 2020 | A1 |
20200232454 | Chretien et al. | Jul 2020 | A1 |
20200256333 | Surjaatmadja | Aug 2020 | A1 |
20200263498 | Fischer et al. | Aug 2020 | A1 |
20200263525 | Reid | Aug 2020 | A1 |
20200263526 | Fischer et al. | Aug 2020 | A1 |
20200263527 | Fischer et al. | Aug 2020 | A1 |
20200263528 | Fischer et al. | Aug 2020 | A1 |
20200267888 | Putz | Aug 2020 | A1 |
20200291731 | Haiderer et al. | Sep 2020 | A1 |
20200295574 | Batsch-Smith | Sep 2020 | A1 |
20200309113 | Hunter et al. | Oct 2020 | A1 |
20200325752 | Clark et al. | Oct 2020 | A1 |
20200325760 | Markham | Oct 2020 | A1 |
20200325761 | Williams | Oct 2020 | A1 |
20200325893 | Kraige et al. | Oct 2020 | A1 |
20200332784 | Zhang et al. | Oct 2020 | A1 |
20200332788 | Cui et al. | Oct 2020 | A1 |
20200340313 | Fischer et al. | Oct 2020 | A1 |
20200340340 | Oehring et al. | Oct 2020 | A1 |
20200340344 | Reckels et al. | Oct 2020 | A1 |
20200340404 | Stockstill | Oct 2020 | A1 |
20200347725 | Morris et al. | Nov 2020 | A1 |
20200354928 | Wehler et al. | Nov 2020 | A1 |
20200362760 | Morenko et al. | Nov 2020 | A1 |
20200362764 | Saintignan et al. | Nov 2020 | A1 |
20200370394 | Cai et al. | Nov 2020 | A1 |
20200370408 | Cai et al. | Nov 2020 | A1 |
20200370429 | Cai et al. | Nov 2020 | A1 |
20200371490 | Cai et al. | Nov 2020 | A1 |
20200340322 | Sizemore et al. | Dec 2020 | A1 |
20200386222 | Pham et al. | Dec 2020 | A1 |
20200392826 | Cui et al. | Dec 2020 | A1 |
20200392827 | George et al. | Dec 2020 | A1 |
20200393088 | Sizemore et al. | Dec 2020 | A1 |
20200398238 | Zhong et al. | Dec 2020 | A1 |
20200400000 | Ghasripoor et al. | Dec 2020 | A1 |
20200400005 | Han et al. | Dec 2020 | A1 |
20200407625 | Stephenson | Dec 2020 | A1 |
20200408071 | Li et al. | Dec 2020 | A1 |
20200408144 | Feng et al. | Dec 2020 | A1 |
20200408147 | Zhang et al. | Dec 2020 | A1 |
20200408149 | Li et al. | Dec 2020 | A1 |
20210025324 | Morris et al. | Jan 2021 | A1 |
20210025383 | Bodishbaugh et al. | Jan 2021 | A1 |
20210032961 | Hinderliter et al. | Feb 2021 | A1 |
20210054727 | Floyd | Feb 2021 | A1 |
20210071503 | Ogg et al. | Mar 2021 | A1 |
20210071574 | Feng et al. | Mar 2021 | A1 |
20210071579 | Li et al. | Mar 2021 | A1 |
20210071654 | Brunson | Mar 2021 | A1 |
20210071752 | Cui et al. | Mar 2021 | A1 |
20210079758 | Yeung et al. | Mar 2021 | A1 |
20210079851 | Yeung et al. | Mar 2021 | A1 |
20210086851 | Zhang et al. | Mar 2021 | A1 |
20210087883 | Zhang et al. | Mar 2021 | A1 |
20210087916 | Zhang et al. | Mar 2021 | A1 |
20210087925 | Heidari et al. | Mar 2021 | A1 |
20210087943 | Cui et al. | Mar 2021 | A1 |
20210088042 | Zhang et al. | Mar 2021 | A1 |
20210123425 | Cui et al. | Apr 2021 | A1 |
20210123434 | Cui et al. | Apr 2021 | A1 |
20210123435 | Cui et al. | Apr 2021 | A1 |
20210131409 | Cui et al. | May 2021 | A1 |
20210156240 | Cicci et al. | May 2021 | A1 |
20210156241 | Cook | May 2021 | A1 |
20210172282 | Wang et al. | Jun 2021 | A1 |
20210180517 | Zhou et al. | Jun 2021 | A1 |
20210199110 | Albert et al. | Jul 2021 | A1 |
20210222690 | Beisel | Jul 2021 | A1 |
20210246774 | Cui et al. | Aug 2021 | A1 |
20210285311 | Ji et al. | Sep 2021 | A1 |
20210285432 | Ji et al. | Sep 2021 | A1 |
20210301807 | Cui et al. | Sep 2021 | A1 |
20210306720 | Sandoval et al. | Sep 2021 | A1 |
20210308638 | Zhong et al. | Oct 2021 | A1 |
20210348475 | Yeung et al. | Nov 2021 | A1 |
20210348476 | Yeung | Nov 2021 | A1 |
20210348477 | Yeung et al. | Nov 2021 | A1 |
20210355927 | Jian et al. | Nov 2021 | A1 |
20210372395 | Li et al. | Dec 2021 | A1 |
20210388760 | Feng et al. | Dec 2021 | A1 |
20220082007 | Zhang et al. | Mar 2022 | A1 |
20220090476 | Zhang et al. | Mar 2022 | A1 |
20220090477 | Zhang et al. | Mar 2022 | A1 |
20220090478 | Zhang et al. | Mar 2022 | A1 |
20220112892 | Cui et al. | Apr 2022 | A1 |
20220120262 | Ji et al. | Apr 2022 | A1 |
20220145740 | Yuan et al. | May 2022 | A1 |
20220154775 | Liu et al. | May 2022 | A1 |
20220155373 | Liu et al. | May 2022 | A1 |
20220162931 | Zhong et al. | May 2022 | A1 |
20220162991 | Zhang et al. | May 2022 | A1 |
20220181859 | Ji et al. | Jun 2022 | A1 |
20220186724 | Chang et al. | Jun 2022 | A1 |
20220213777 | Cui et al. | Jul 2022 | A1 |
20220220836 | Zhang et al. | Jul 2022 | A1 |
20220224087 | Ji et al. | Jul 2022 | A1 |
20220228468 | Cui et al. | Jul 2022 | A1 |
20220228469 | Zhang et al. | Jul 2022 | A1 |
20220235639 | Zhang et al. | Jul 2022 | A1 |
20220235640 | Mao et al. | Jul 2022 | A1 |
20220235641 | Zhang et al. | Jul 2022 | A1 |
20220235642 | Zhang et al. | Jul 2022 | A1 |
20220235802 | Jiang et al. | Jul 2022 | A1 |
20220242297 | Tian et al. | Aug 2022 | A1 |
20220243613 | Ji et al. | Aug 2022 | A1 |
20220243724 | Li et al. | Aug 2022 | A1 |
20220250000 | Zhang et al. | Aug 2022 | A1 |
20220255319 | Liu et al. | Aug 2022 | A1 |
20220258659 | Cui et al. | Aug 2022 | A1 |
20220259947 | Li et al. | Aug 2022 | A1 |
20220259964 | Zhang et al. | Aug 2022 | A1 |
20220268201 | Feng et al. | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
9609498 | Jul 1999 | AU |
737970 | Sep 2001 | AU |
2043184 | Aug 1994 | CA |
2829762 | Sep 2012 | CA |
2876687 | May 2014 | CA |
2693567 | Sep 2014 | CA |
2964597 | Oct 2017 | CA |
2876687 | Apr 2019 | CA |
2919175 | Mar 2021 | CA |
2622404 | Jun 2004 | CN |
2779054 | May 2006 | CN |
2890325 | Apr 2007 | CN |
200964929 | Oct 2007 | CN |
101323151 | Dec 2008 | CN |
201190660 | Feb 2009 | CN |
201190892 | Feb 2009 | CN |
201190893 | Feb 2009 | CN |
101414171 | Apr 2009 | CN |
201215073 | Apr 2009 | CN |
201236650 | May 2009 | CN |
201275542 | Jul 2009 | CN |
201275801 | Jul 2009 | CN |
201333385 | Oct 2009 | CN |
201443300 | Apr 2010 | CN |
201496415 | Jun 2010 | CN |
201501365 | Jun 2010 | CN |
201507271 | Jun 2010 | CN |
101323151 | Jul 2010 | CN |
201560210 | Aug 2010 | CN |
201581862 | Sep 2010 | CN |
201610728 | Oct 2010 | CN |
201610751 | Oct 2010 | CN |
201618530 | Nov 2010 | CN |
201661255 | Dec 2010 | CN |
101949382 | Jan 2011 | CN |
201756927 | Mar 2011 | CN |
101414171 | May 2011 | CN |
102128011 | Jul 2011 | CN |
102140898 | Aug 2011 | CN |
102155172 | Aug 2011 | CN |
102182904 | Sep 2011 | CN |
202000930 | Oct 2011 | CN |
202055781 | Nov 2011 | CN |
202082265 | Dec 2011 | CN |
202100216 | Jan 2012 | CN |
202100217 | Jan 2012 | CN |
202100815 | Jan 2012 | CN |
202124340 | Jan 2012 | CN |
202140051 | Feb 2012 | CN |
202140080 | Feb 2012 | CN |
202144789 | Feb 2012 | CN |
202144943 | Feb 2012 | CN |
202149354 | Feb 2012 | CN |
102383748 | Mar 2012 | CN |
202156297 | Mar 2012 | CN |
202158355 | Mar 2012 | CN |
202163504 | Mar 2012 | CN |
202165236 | Mar 2012 | CN |
202180866 | Apr 2012 | CN |
202181875 | Apr 2012 | CN |
202187744 | Apr 2012 | CN |
202191854 | Apr 2012 | CN |
202250008 | May 2012 | CN |
101885307 | Jul 2012 | CN |
102562020 | Jul 2012 | CN |
202326156 | Jul 2012 | CN |
202370773 | Aug 2012 | CN |
202417397 | Sep 2012 | CN |
202417461 | Sep 2012 | CN |
102729335 | Oct 2012 | CN |
202463955 | Oct 2012 | CN |
202463957 | Oct 2012 | CN |
202467739 | Oct 2012 | CN |
202467801 | Oct 2012 | CN |
202531016 | Nov 2012 | CN |
202544794 | Nov 2012 | CN |
102825039 | Dec 2012 | CN |
202578592 | Dec 2012 | CN |
202579164 | Dec 2012 | CN |
202594808 | Dec 2012 | CN |
202594928 | Dec 2012 | CN |
202596615 | Dec 2012 | CN |
202596616 | Dec 2012 | CN |
102849880 | Jan 2013 | CN |
102889191 | Jan 2013 | CN |
202641535 | Jan 2013 | CN |
202645475 | Jan 2013 | CN |
202666716 | Jan 2013 | CN |
202669645 | Jan 2013 | CN |
202669944 | Jan 2013 | CN |
202671336 | Jan 2013 | CN |
202673269 | Jan 2013 | CN |
202751982 | Feb 2013 | CN |
102963629 | Mar 2013 | CN |
202767964 | Mar 2013 | CN |
202789791 | Mar 2013 | CN |
202789792 | Mar 2013 | CN |
202810717 | Mar 2013 | CN |
202827276 | Mar 2013 | CN |
202833093 | Mar 2013 | CN |
202833370 | Mar 2013 | CN |
102140898 | Apr 2013 | CN |
202895467 | Apr 2013 | CN |
202926404 | May 2013 | CN |
202935216 | May 2013 | CN |
202935798 | May 2013 | CN |
202935816 | May 2013 | CN |
202970631 | Jun 2013 | CN |
103223315 | Jul 2013 | CN |
203050598 | Jul 2013 | CN |
103233714 | Aug 2013 | CN |
103233715 | Aug 2013 | CN |
103245523 | Aug 2013 | CN |
103247220 | Aug 2013 | CN |
103253839 | Aug 2013 | CN |
103277290 | Sep 2013 | CN |
103321782 | Sep 2013 | CN |
203170270 | Sep 2013 | CN |
203172509 | Sep 2013 | CN |
203175778 | Sep 2013 | CN |
203175787 | Sep 2013 | CN |
102849880 | Oct 2013 | CN |
203241231 | Oct 2013 | CN |
203244941 | Oct 2013 | CN |
203244942 | Oct 2013 | CN |
203303798 | Nov 2013 | CN |
102155172 | Dec 2013 | CN |
102729335 | Dec 2013 | CN |
103420532 | Dec 2013 | CN |
203321792 | Dec 2013 | CN |
203412658 | Jan 2014 | CN |
203420697 | Feb 2014 | CN |
203480755 | Mar 2014 | CN |
103711437 | Apr 2014 | CN |
203531815 | Apr 2014 | CN |
203531871 | Apr 2014 | CN |
203531883 | Apr 2014 | CN |
203556164 | Apr 2014 | CN |
203558809 | Apr 2014 | CN |
203559861 | Apr 2014 | CN |
203559893 | Apr 2014 | CN |
203560189 | Apr 2014 | CN |
102704870 | May 2014 | CN |
203611843 | May 2014 | CN |
203612531 | May 2014 | CN |
203612843 | May 2014 | CN |
203614062 | May 2014 | CN |
203614388 | May 2014 | CN |
203621045 | Jun 2014 | CN |
203621046 | Jun 2014 | CN |
203621051 | Jun 2014 | CN |
203640993 | Jun 2014 | CN |
203655221 | Jun 2014 | CN |
103899280 | Jul 2014 | CN |
103923670 | Jul 2014 | CN |
203685052 | Jul 2014 | CN |
203716936 | Jul 2014 | CN |
103990410 | Aug 2014 | CN |
103993869 | Aug 2014 | CN |
203754009 | Aug 2014 | CN |
203754025 | Aug 2014 | CN |
203754341 | Aug 2014 | CN |
203756614 | Aug 2014 | CN |
203770264 | Aug 2014 | CN |
203784519 | Aug 2014 | CN |
203784520 | Aug 2014 | CN |
104057864 | Sep 2014 | CN |
203819819 | Sep 2014 | CN |
203823431 | Sep 2014 | CN |
203835337 | Sep 2014 | CN |
104074500 | Oct 2014 | CN |
203876633 | Oct 2014 | CN |
203876636 | Oct 2014 | CN |
203877364 | Oct 2014 | CN |
203877365 | Oct 2014 | CN |
203877375 | Oct 2014 | CN |
203877424 | Oct 2014 | CN |
203879476 | Oct 2014 | CN |
203879479 | Oct 2014 | CN |
203890292 | Oct 2014 | CN |
203899476 | Oct 2014 | CN |
203906206 | Oct 2014 | CN |
104150728 | Nov 2014 | CN |
104176522 | Dec 2014 | CN |
104196464 | Dec 2014 | CN |
104234651 | Dec 2014 | CN |
203971841 | Dec 2014 | CN |
203975450 | Dec 2014 | CN |
204020788 | Dec 2014 | CN |
204021980 | Dec 2014 | CN |
204024625 | Dec 2014 | CN |
204051401 | Dec 2014 | CN |
204060661 | Dec 2014 | CN |
104260672 | Jan 2015 | CN |
104314512 | Jan 2015 | CN |
204077478 | Jan 2015 | CN |
204077526 | Jan 2015 | CN |
204078307 | Jan 2015 | CN |
204083051 | Jan 2015 | CN |
204113168 | Jan 2015 | CN |
104340682 | Feb 2015 | CN |
104358536 | Feb 2015 | CN |
104369687 | Feb 2015 | CN |
104402178 | Mar 2015 | CN |
104402185 | Mar 2015 | CN |
104402186 | Mar 2015 | CN |
204209819 | Mar 2015 | CN |
204224560 | Mar 2015 | CN |
204225813 | Mar 2015 | CN |
204225839 | Mar 2015 | CN |
104533392 | Apr 2015 | CN |
104563938 | Apr 2015 | CN |
104563994 | Apr 2015 | CN |
104563995 | Apr 2015 | CN |
104563998 | Apr 2015 | CN |
104564033 | Apr 2015 | CN |
204257122 | Apr 2015 | CN |
204283610 | Apr 2015 | CN |
204283782 | Apr 2015 | CN |
204297682 | Apr 2015 | CN |
204299810 | Apr 2015 | CN |
103223315 | May 2015 | CN |
104594857 | May 2015 | CN |
104595493 | May 2015 | CN |
104612647 | May 2015 | CN |
104612928 | May 2015 | CN |
104632126 | May 2015 | CN |
204325094 | May 2015 | CN |
204325098 | May 2015 | CN |
204326983 | May 2015 | CN |
204326985 | May 2015 | CN |
204344040 | May 2015 | CN |
204344095 | May 2015 | CN |
104727797 | Jun 2015 | CN |
204402414 | Jun 2015 | CN |
204402423 | Jun 2015 | CN |
204402450 | Jun 2015 | CN |
204553866 | Jun 2015 | CN |
204571831 | Jun 2015 | CN |
103247220 | Jul 2015 | CN |
104803568 | Jul 2015 | CN |
204436360 | Jul 2015 | CN |
204457524 | Jul 2015 | CN |
204472485 | Jul 2015 | CN |
204473625 | Jul 2015 | CN |
204477303 | Jul 2015 | CN |
204493095 | Jul 2015 | CN |
204493309 | Jul 2015 | CN |
103253839 | Aug 2015 | CN |
104820372 | Aug 2015 | CN |
104832093 | Aug 2015 | CN |
104863523 | Aug 2015 | CN |
204552723 | Aug 2015 | CN |
204703814 | Oct 2015 | CN |
204703833 | Oct 2015 | CN |
204703834 | Oct 2015 | CN |
105092401 | Nov 2015 | CN |
103233715 | Dec 2015 | CN |
103790927 | Dec 2015 | CN |
105207097 | Dec 2015 | CN |
204831952 | Dec 2015 | CN |
204899777 | Dec 2015 | CN |
102602323 | Jan 2016 | CN |
105240064 | Jan 2016 | CN |
204944834 | Jan 2016 | CN |
205042127 | Feb 2016 | CN |
205172478 | Apr 2016 | CN |
103993869 | May 2016 | CN |
105536299 | May 2016 | CN |
105545207 | May 2016 | CN |
205260249 | May 2016 | CN |
103233714 | Jun 2016 | CN |
104340682 | Jun 2016 | CN |
205297518 | Jun 2016 | CN |
205298447 | Jun 2016 | CN |
205391821 | Jul 2016 | CN |
205400701 | Jul 2016 | CN |
103277290 | Aug 2016 | CN |
104260672 | Aug 2016 | CN |
205477370 | Aug 2016 | CN |
205479153 | Aug 2016 | CN |
205503058 | Aug 2016 | CN |
205503068 | Aug 2016 | CN |
205503089 | Aug 2016 | CN |
105958098 | Sep 2016 | CN |
205599180 | Sep 2016 | CN |
205599180 | Sep 2016 | CN |
106121577 | Nov 2016 | CN |
205709587 | Nov 2016 | CN |
104612928 | Dec 2016 | CN |
106246120 | Dec 2016 | CN |
205805471 | Dec 2016 | CN |
106321045 | Jan 2017 | CN |
205858306 | Jan 2017 | CN |
106438310 | Feb 2017 | CN |
205937833 | Feb 2017 | CN |
104563994 | Mar 2017 | CN |
206129196 | Apr 2017 | CN |
104369687 | May 2017 | CN |
106715165 | May 2017 | CN |
106761561 | May 2017 | CN |
105240064 | Jun 2017 | CN |
206237147 | Jun 2017 | CN |
206287832 | Jun 2017 | CN |
206346711 | Jul 2017 | CN |
104563995 | Sep 2017 | CN |
107120822 | Sep 2017 | CN |
107143298 | Sep 2017 | CN |
107159046 | Sep 2017 | CN |
107188018 | Sep 2017 | CN |
206496016 | Sep 2017 | CN |
104564033 | Oct 2017 | CN |
107234358 | Oct 2017 | CN |
107261975 | Oct 2017 | CN |
206581929 | Oct 2017 | CN |
104820372 | Dec 2017 | CN |
105092401 | Dec 2017 | CN |
107476769 | Dec 2017 | CN |
107520526 | Dec 2017 | CN |
206754664 | Dec 2017 | CN |
107605427 | Jan 2018 | CN |
106438310 | Feb 2018 | CN |
107654196 | Feb 2018 | CN |
107656499 | Feb 2018 | CN |
107728657 | Feb 2018 | CN |
206985503 | Feb 2018 | CN |
207017968 | Feb 2018 | CN |
107859053 | Mar 2018 | CN |
207057867 | Mar 2018 | CN |
207085817 | Mar 2018 | CN |
105545207 | Apr 2018 | CN |
107883091 | Apr 2018 | CN |
107902427 | Apr 2018 | CN |
107939290 | Apr 2018 | CN |
107956708 | Apr 2018 | CN |
207169595 | Apr 2018 | CN |
207194873 | Apr 2018 | CN |
207245674 | Apr 2018 | CN |
108034466 | May 2018 | CN |
108036071 | May 2018 | CN |
108087050 | May 2018 | CN |
207380566 | May 2018 | CN |
108103483 | Jun 2018 | CN |
108179046 | Jun 2018 | CN |
108254276 | Jul 2018 | CN |
108311535 | Jul 2018 | CN |
207583576 | Jul 2018 | CN |
207634064 | Jul 2018 | CN |
207648054 | Jul 2018 | CN |
207650621 | Jul 2018 | CN |
108371894 | Aug 2018 | CN |
207777153 | Aug 2018 | CN |
108547601 | Sep 2018 | CN |
108547766 | Sep 2018 | CN |
108555826 | Sep 2018 | CN |
108561098 | Sep 2018 | CN |
108561750 | Sep 2018 | CN |
108590617 | Sep 2018 | CN |
207813495 | Sep 2018 | CN |
207814698 | Sep 2018 | CN |
207862275 | Sep 2018 | CN |
108687954 | Oct 2018 | CN |
207935270 | Oct 2018 | CN |
207961582 | Oct 2018 | CN |
207964530 | Oct 2018 | CN |
108789848 | Nov 2018 | CN |
108799473 | Nov 2018 | CN |
108868675 | Nov 2018 | CN |
208086829 | Nov 2018 | CN |
208089263 | Nov 2018 | CN |
208169068 | Nov 2018 | CN |
108979569 | Dec 2018 | CN |
109027662 | Dec 2018 | CN |
109058092 | Dec 2018 | CN |
208179454 | Dec 2018 | CN |
208179502 | Dec 2018 | CN |
208253147 | Dec 2018 | CN |
208260574 | Dec 2018 | CN |
109114418 | Jan 2019 | CN |
109141990 | Jan 2019 | CN |
208313120 | Jan 2019 | CN |
208330319 | Jan 2019 | CN |
208342730 | Jan 2019 | CN |
208430982 | Jan 2019 | CN |
208430986 | Jan 2019 | CN |
109404274 | Mar 2019 | CN |
109429610 | Mar 2019 | CN |
109491318 | Mar 2019 | CN |
109515177 | Mar 2019 | CN |
109526523 | Mar 2019 | CN |
109534737 | Mar 2019 | CN |
208564504 | Mar 2019 | CN |
208564516 | Mar 2019 | CN |
208564525 | Mar 2019 | CN |
208564918 | Mar 2019 | CN |
208576026 | Mar 2019 | CN |
208576042 | Mar 2019 | CN |
208650818 | Mar 2019 | CN |
208669244 | Mar 2019 | CN |
109555484 | Apr 2019 | CN |
109682881 | Apr 2019 | CN |
208730959 | Apr 2019 | CN |
208735264 | Apr 2019 | CN |
208746733 | Apr 2019 | CN |
208749529 | Apr 2019 | CN |
208750405 | Apr 2019 | CN |
208764658 | Apr 2019 | CN |
109736740 | May 2019 | CN |
109751007 | May 2019 | CN |
208868428 | May 2019 | CN |
208870761 | May 2019 | CN |
109869294 | Jun 2019 | CN |
109882144 | Jun 2019 | CN |
109882372 | Jun 2019 | CN |
209012047 | Jun 2019 | CN |
209100025 | Jul 2019 | CN |
110080707 | Aug 2019 | CN |
110118127 | Aug 2019 | CN |
110124574 | Aug 2019 | CN |
110145277 | Aug 2019 | CN |
110145399 | Aug 2019 | CN |
110152552 | Aug 2019 | CN |
110155193 | Aug 2019 | CN |
110159225 | Aug 2019 | CN |
110159432 | Aug 2019 | CN |
110159432 | Aug 2019 | CN |
110159433 | Aug 2019 | CN |
110208100 | Sep 2019 | CN |
110252191 | Sep 2019 | CN |
110284854 | Sep 2019 | CN |
110284972 | Sep 2019 | CN |
209387358 | Sep 2019 | CN |
110374745 | Oct 2019 | CN |
209534736 | Oct 2019 | CN |
110425105 | Nov 2019 | CN |
110439779 | Nov 2019 | CN |
110454285 | Nov 2019 | CN |
110454352 | Nov 2019 | CN |
110467298 | Nov 2019 | CN |
110469312 | Nov 2019 | CN |
110469314 | Nov 2019 | CN |
110469405 | Nov 2019 | CN |
110469654 | Nov 2019 | CN |
110485982 | Nov 2019 | CN |
110485983 | Nov 2019 | CN |
110485984 | Nov 2019 | CN |
110486249 | Nov 2019 | CN |
110500255 | Nov 2019 | CN |
110510771 | Nov 2019 | CN |
110513097 | Nov 2019 | CN |
209650738 | Nov 2019 | CN |
209653968 | Nov 2019 | CN |
209654004 | Nov 2019 | CN |
209654022 | Nov 2019 | CN |
209654128 | Nov 2019 | CN |
209656622 | Nov 2019 | CN |
107849130 | Dec 2019 | CN |
108087050 | Dec 2019 | CN |
110566173 | Dec 2019 | CN |
110608030 | Dec 2019 | CN |
110617187 | Dec 2019 | CN |
110617188 | Dec 2019 | CN |
110617318 | Dec 2019 | CN |
209740823 | Dec 2019 | CN |
209780827 | Dec 2019 | CN |
209798631 | Dec 2019 | CN |
209799942 | Dec 2019 | CN |
209800178 | Dec 2019 | CN |
209855723 | Dec 2019 | CN |
209855742 | Dec 2019 | CN |
209875063 | Dec 2019 | CN |
110656919 | Jan 2020 | CN |
107520526 | Feb 2020 | CN |
110787667 | Feb 2020 | CN |
110821464 | Feb 2020 | CN |
110833665 | Feb 2020 | CN |
110848028 | Feb 2020 | CN |
210049880 | Feb 2020 | CN |
210049882 | Feb 2020 | CN |
210097596 | Feb 2020 | CN |
210105817 | Feb 2020 | CN |
210105818 | Feb 2020 | CN |
210105993 | Feb 2020 | CN |
110873093 | Mar 2020 | CN |
210139911 | Mar 2020 | CN |
110947681 | Apr 2020 | CN |
111058810 | Apr 2020 | CN |
111075391 | Apr 2020 | CN |
210289931 | Apr 2020 | CN |
210289932 | Apr 2020 | CN |
210289933 | Apr 2020 | CN |
210303516 | Apr 2020 | CN |
211412945 | Apr 2020 | CN |
111089003 | May 2020 | CN |
111151186 | May 2020 | CN |
111167769 | May 2020 | CN |
111169833 | May 2020 | CN |
111173476 | May 2020 | CN |
111185460 | May 2020 | CN |
111185461 | May 2020 | CN |
111188763 | May 2020 | CN |
111206901 | May 2020 | CN |
111206992 | May 2020 | CN |
111206994 | May 2020 | CN |
210449044 | May 2020 | CN |
210460875 | May 2020 | CN |
210522432 | May 2020 | CN |
210598943 | May 2020 | CN |
210598945 | May 2020 | CN |
210598946 | May 2020 | CN |
210599194 | May 2020 | CN |
210599303 | May 2020 | CN |
210600110 | May 2020 | CN |
111219326 | Jun 2020 | CN |
111350595 | Jun 2020 | CN |
210660319 | Jun 2020 | CN |
210714569 | Jun 2020 | CN |
210769168 | Jun 2020 | CN |
210769169 | Jun 2020 | CN |
210769170 | Jun 2020 | CN |
210770133 | Jun 2020 | CN |
210825844 | Jun 2020 | CN |
210888904 | Jun 2020 | CN |
210888905 | Jun 2020 | CN |
210889242 | Jun 2020 | CN |
111397474 | Jul 2020 | CN |
111412064 | Jul 2020 | CN |
111441923 | Jul 2020 | CN |
111441925 | Jul 2020 | CN |
111503517 | Aug 2020 | CN |
111515898 | Aug 2020 | CN |
111594059 | Aug 2020 | CN |
111594062 | Aug 2020 | CN |
111594144 | Aug 2020 | CN |
211201919 | Aug 2020 | CN |
211201920 | Aug 2020 | CN |
211202218 | Aug 2020 | CN |
111608965 | Sep 2020 | CN |
111664087 | Sep 2020 | CN |
111677476 | Sep 2020 | CN |
111677647 | Sep 2020 | CN |
111692064 | Sep 2020 | CN |
111692065 | Sep 2020 | CN |
211384571 | Sep 2020 | CN |
211397553 | Sep 2020 | CN |
211397677 | Sep 2020 | CN |
211500955 | Sep 2020 | CN |
211524765 | Sep 2020 | CN |
4004854 | Aug 1991 | DE |
4241614 | Jun 1994 | DE |
102012018825 | Mar 2014 | DE |
102013111655 | Dec 2014 | DE |
102015103872 | Oct 2015 | DE |
102013114335 | Dec 2020 | DE |
0835983 | Apr 1998 | EP |
1378683 | Jan 2004 | EP |
2143916 | Jan 2010 | EP |
2613023 | Jul 2013 | EP |
3095989 | Nov 2016 | EP |
3211766 | Aug 2017 | EP |
3049642 | Apr 2018 | EP |
3354866 | Aug 2018 | EP |
3075946 | May 2019 | EP |
2795774 | Jun 1999 | FR |
474072 | Oct 1937 | GB |
1438172 | Jun 1976 | GB |
S57135212 | Feb 1984 | JP |
20020026398 | Apr 2002 | KR |
13562 | Apr 2000 | RU |
1993020328 | Oct 1993 | WO |
2006025886 | Mar 2006 | WO |
2009023042 | Feb 2009 | WO |
20110133821 | Oct 2011 | WO |
2012139380 | Oct 2012 | WO |
2013158822 | Oct 2013 | WO |
PCTCN2012074945 | Nov 2013 | WO |
2013185399 | Dec 2013 | WO |
2015158020 | Oct 2015 | WO |
2016014476 | Jan 2016 | WO |
2016033983 | Mar 2016 | WO |
2016078181 | May 2016 | WO |
2016101374 | Jun 2016 | WO |
2016112590 | Jul 2016 | WO |
2017123656 | Jul 2017 | WO |
2017146279 | Aug 2017 | WO |
2017213848 | Dec 2017 | WO |
2018031029 | Feb 2018 | WO |
2018038710 | Mar 2018 | WO |
2018044293 | Mar 2018 | WO |
2018044307 | Mar 2018 | WO |
2018071738 | Apr 2018 | WO |
2018101909 | Jun 2018 | WO |
2018101912 | Jun 2018 | WO |
2018106210 | Jun 2018 | WO |
2018106225 | Jun 2018 | WO |
2018106252 | Jun 2018 | WO |
2018132106 | Jul 2018 | WO |
2018156131 | Aug 2018 | WO |
2018075034 | Oct 2018 | WO |
2018187346 | Oct 2018 | WO |
2018031031 | Feb 2019 | WO |
2019045691 | Mar 2019 | WO |
2019046680 | Mar 2019 | WO |
2019060922 | Mar 2019 | WO |
2019117862 | Jun 2019 | WO |
2019126742 | Jun 2019 | WO |
2019147601 | Aug 2019 | WO |
2019169366 | Sep 2019 | WO |
2019195651 | Oct 2019 | WO |
2019200510 | Oct 2019 | WO |
2019210417 | Nov 2019 | WO |
2020018068 | Jan 2020 | WO |
2020046866 | Mar 2020 | WO |
2020072076 | Apr 2020 | WO |
2020076569 | Apr 2020 | WO |
2020097060 | May 2020 | WO |
2020104088 | May 2020 | WO |
2020131085 | Jun 2020 | WO |
2020211083 | Oct 2020 | WO |
2020211086 | Oct 2020 | WO |
2021038604 | Mar 2021 | WO |
2021038604 | Mar 2021 | WO |
2021041783 | Mar 2021 | WO |
Entry |
---|
AFGlobal Corporation, Durastim Hydraulic Fracturing Pump, A Revolutionary Design for Continuous Duty Hydraulic Fracturing, 2018. |
SPM® QEM 5000 E-Frac Pump Specification Sheet, Weir Group (2019) (“Weir 5000”). |
Green Field Energy Services Natural Gas Driven Turbine Frac Pumps HHP Summit Presentation, Yumpu (Sep. 2012), https://www.yumpu.com/en/document/read/49685291/turbine-frac-pump-assembly-hhp (“Green Field”). |
Dowell B908 “Turbo-Jet” Operator's Manual. |
Jereh Debut's Super power Turbine Fracturing Pump, Leading the Industrial Revolution, Jereh Oilfield Services Group (Mar. 19, 2014), https://www.prnewswire.com/news-releases/jereh-debuts-super-power-turbine-fracturing-pump-leading-the-industrial-revolution-250992111.html. |
Jereh Apollo 4500 Turbine Frac Pumper Finishes Successful Field Operation in China, Jereh Group (Feb. 13, 2015), as available on Apr. 20, 2015, https://web.archive.org/web/20150420220625/https://www. prnewswire.com/news-releases/jereh-apollo-4500-turbine-frac-pumper-finishes-successful-field-operation-in-china-300035829.html. |
35% Economy Increase, Dual-fuel System Highlighting Jereh Apollo Frac Pumper, Jereh Group (Apr. 13, 2015), https://www..jereh.com/en/news/press-release/news-detail-7345.htm. |
Hydraulic Fracturing: Gas turbine proves successful in shale gasfield operations, Vericor (2017), https://www vericor.com/wp-content/ uploads/2020/02/7.-Fracing-4500hp-Pump-China-En.pdf (“Vericor Case Study”). |
Jereh Apollo Turbine Fracturing Pumper Featured on China Central Television, Jereh Group (Mar. 9, 2018), https://www.jereh.com/en/ news/press-release/news-detail-7267.htm. |
Jereh Unveiled New Electric Fracturing Solution at OTC 2019, Jereh Group (May 7, 2019), as available on May 28, 2019, https://web.archive.org/web/20190528183906/https://www.prnewswire .com/news-releases/jereh-unveiled-new-electric-fracturing-solution-at-otc-2019-300845028.html. |
Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015), https://www.youtube.com/watch?v=PlkDbU5dE0o. |
Transcript of Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015). |
Jereh Group, Jereh Fracturing Equipment. YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q. |
Transcript of Jereh Group, Jereh Fracturing Equipment, YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q. |
Ferdinand P. Beer et al., Mechanics of Materials (6th ed. 2012). |
Weir Oil & Gas Introduces Industry's First Continuous Duty 5000-Horsepower Pump, Weir Group (Jul. 25, 2019), https://www.global. weir/newsroom/news-articles/weir-oil-and-gas-introduces-industrys-first-continuous-duty-5000-horsepower-pump/. |
2012 High Horsepower Summit Agenda, Natural Gas for High Horsepower Applications (Sep. 5, 2012). |
Review of HHP Summit 2012, Gladstein, Neandross & Associates https://www.gladstein.org/gna-conferences/high-horsepower-summit-2012/. |
Green Field Energy Services Deploys Third New Hydraulic Fracturing System, Green Field Energy Services, Inc. (Jul. 11, 2012), https://www.prnewswire.com/news-releases/green-field-energy-services-deploys-third-new-hydraulic-fracturing-spread-162113425. |
Karen Boman, Turbine Technology Powers Green Field Multi-Fuel Frack Pump, Rigzone (Mar. 7, 2015), as available on Mar. 14, 2015, https://web.archive.org/web/20150314203227/https://www.rigzone.co m/news/oil-gas/a/124883/Turbine_Technology_Powers_Green_Field_ MultiFuel_Frack_Pump. |
“Turbine Frac Units,” WMD Squared (2012), https://wmdsquared.com/ work/gfes-turbine-frac-units/. |
Leslie Turj, Green Field asset sale called ‘largest disposition industry has seen,’ The INDsider Media (Mar. 19, 2014), http://theind.com/ article-16497-green-field-asset-sale-called-%E2%80%98largest-disposition-industry-has-seen%60.html. |
“Honghua developing new-generation shale-drilling rig, plans testing of frac pump”; Katherine Scott; Drilling Contractor; May 23, 2013; accessed at https://www.drillingcontractor.org/honghua-developing-new-generation-shale-drilling-rig-plans-testing-of-frac-pump-23278. |
De Gevigney et al., “Analysis of No. load dependent power losses in a planetary gear train by using thermal network method”, International Gear Conference 2014: Aug. 26-28 2014, Lyon, pp. 615-624. |
Special-Purpose Couplings for Petroleum, Chemical, and Gas Industry Services, API Standard 671 (4th Edition) (2010). |
The Application of Flexible Couplings for Turbomachinery, Jon R. Mancuso et al., Proceedings of the EighteenthTurbomachinery Symposium (1989). |
Pump Control With Variable Frequency Drives, Kevin Tory, PUMPS & Systems: Advances in Motors and Drives, Reprint from Jun. 2008. |
Fracture Design and Stimulation, Mike Eberhard, P.E., WellConstruction & Operations Technical Workshop inSupport of the EPA Hydraulic Fracturing Study, Mar. 10-11, 2011. |
General Purpose vs. Special Purpose Couplings, Jon Mancuso, Proceedings of the Twenty-Third TurboMachinerySymposium (1994). |
Overview of Industry Guidance/Best Practices on Hydraulic Fracturing (HF), American Petroleum Institute, © 2012. |
API Member Companies, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20130424080625/http://api.org/globalitems/globalheaderpages/membership/api-member-companies, accessed Jan. 4, 2021. |
API's Global Industry Services, American Petroleum Institute, © Aug. 2020. |
About API, American Petroleum Institute, https://www.api.org /about, accessed Dec. 30, 2021. |
About API, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110422104346 /http://api.org/aboutapi/, captured Apr. 22, 2011. |
Publications, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110427043936 /http://www.api.org:80/Publications/, captured Apr. 27, 2011. |
Procedures for Standards Development, American Petroleum Institute, Third Edition (2006). |
WorldCat Library Collections Database Records for API Standard 671 and API Standard 674, https://www.worldcat.org/title/positive-displacement-pumps-reciprocating/oclc/ 858692269&referer=brief_results, accessed Dec. 30, 2021; and https://www.worldcat.org/title/special-purpose-couplings-for-petroleum-chemical-and-gas-industry-services/oclc/871254217&referer=brief_results, accessed Dec. 22, 2021. |
2011 Publications and Services, American Petroleum Institute (2011). |
Standards, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110207195046/http:/www.api.org/Standards/, captured Feb. 7, 2011; and https://web.archive.org/web/20110204112554/http://global.ihs.com/?RID=API1, captured Feb. 4, 2011. |
IHS Markit Standards Store, https://global.ihs.com/doc_ detail.cfm?document_name=API%20STD%20674&item_s_key=00010672#doc-detail-history-anchor, accessed Dec. 30, 2021; and https://global.ihs.com/doc_detail.cfm?&input_doc _number=671 &input_doc_title=&document_name=API%20STD%20671&item_s_key=00010669&item_key_date=890331&origin=DSSC, accessed Dec. 30, 2021. |
ResearchGate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013. |
Filipović, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use in Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012). |
Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017. |
Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking. |
Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/. |
The Leader in Frac Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/. |
Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling. |
Frac Tank Hose (FRAC), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx. |
PLOS ONE, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015. |
FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. OMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009. |
Gardner Denver Hydraulic Fracturing Pumps GD 3000 https://www.gardnerdenver.com/en-us/pumps/triplex-fracking-pump-gd-3000. |
Lekontsev, Yu M., et al. “Two-side sealer operation.” Journal of Mining Science 49.5 (2013): 757-762. |
Tom Hausfeld, GE Power & Water, and Eldon Schelske, Evolution Well Services, TM2500+ Power for Hydraulic Fracturing. |
FTS International's Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018. |
CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019. |
PbNg, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement / Dual Fuel & Bi-Fuel, May 2014. |
Integrated Flow, Skid-mounted Modular Process Systems, Jul. 15, 2017, https://ifsolutions.com/why-modular/. |
Cameron, A Schlumberger Company, Frac Manifold Systems, 2016. |
ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, Aug. 2020, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html. |
JBG Enterprises, Inc., WS-Series Blowout Prevention Safety Coupling—Quick Release Couplings, Sep. 11, 2015, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Sarety-Coupling.asp. |
Halliburton, Vessel-based Modular Solution (VMS), 2015. |
Chun, M. K., H. K. Song, and R. Lallemand. “Heavy duty gas turbines in petrochemical plants: Samsung's Daesan plant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas.” Proceedings of PowerGen Asia Conference, Singapore. 1999. |
Wolf, Jürgen J., and Marko A. Perkavec. “Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content.” ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992. |
Ginter, Timothy, and Thomas Bouvay. “Uprate options for the MS7001 heavy duty gas turbine.” GE paper GER-3808C, GE Energy 12 (2006). |
Chaichan, Miqdam Tariq. “The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation.” International Journal of Scientific & Engineering Research 6.6 (2015): 938-941. |
Ecob, David J., et al. “Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine.” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers Digital Collection, 1996. |
II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019). |
B.M. Mahlalela, et al., .Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea.Stanford.edu (Feb. 11, 2019). |
Department of Energy, United States of America, The Water-Energy Nexus: Challenges and Opportunities purenergypolicy.org (Jun. 2014). |
Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, The Pennsylvania State University, The Graduate School, College of Engineering, 2015. |
Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015. |
Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020. |
M. Ahmadzadehtalatapeh et al.Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020. |
Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018. |
Emmanuel Akita et al., Mewbourne College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019. |
PowerShelter Kit II, nooutage.com, Sep. 6, 2019. |
EMPengineering.com, HEMP Resistant Electrical Generators / Hardened Structures HEMP/GMD Shielded Generators, Virginia, Nov. 3, 2012. |
Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology Göteborg, Sweden 2015. |
J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development, Applied Thermal Engineering 24 (2004) 1421-1429. |
ISM, What is Cracking Pressure, 2019. |
Swagelok, The right valve for controlling flow direction? Check, 2016. |
Technology.org, Check valves how do they work and what are the main type, 2018. |
Dziubak, Tadeusz, “Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter”, Energies 2021, 14, 3577, 28 pages. |
Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004. |
Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010. |
Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en.wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960. |
Wikipedia,Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950. |
HCI JET Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ. |
AFD Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018. |
Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference. |
Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018. |
Frac Shack, Bi-Fuel FracFueller brochure, 2011. |
Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump—HPHPS Frac Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191. |
Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443. |
Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS. |
Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gas-turbine Engines in an Automated High-Pressure Water-Injection Stations; American Petroleum Institute; API-63-144 (Jan. 1, 1963). |
Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection; American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967). |
Porter, John A. (Solar Division International Harvester Co.), Modern Industrial Gas Turbines for the Oil Field; American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967). |
Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services; SPE-2706 (1969). |
Ibragimov, É.S., Use of gas-turbine engines in oil field pumping units; Chem Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, Nov. 1994.). |
Kas'yanov et al., Application of gas-turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian). |
American Petroleum Institute. API 674: Positive Displacement Pumps—Reciprocating. 3rd ed. Washington, DC: API Publishing Services, 2010. |
American Petroleum Institute. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services. 5th ed. Washington, DC: API Publishing Services, 2011. |
Karassik, Igor, Joseph Messina, Paul Cooper, and Charles Heald. Pump Handbook. 4th ed. New York: McGraw-Hill Education, 2008. |
Weir SPM. Weir SPM General Catalog: Well Service Pumps, Flow Control Products, Manifold Trailers, Safety Products, Post Sale Services. Ft. Worth, TX: Weir Oil & Gas. May 28, 2016. https://www.pumpfundamentals.com/pumpdatabase2/weir-spm-general.pdf. |
The Weir Group, Inc. Weir SPM Pump Product Catalog. Ft. Worth, TX: S.P.M. Flow Control, Inc. Oct. 30, 2017. https://manage.global.weir/assets/files/product%20brochures/SPM_2P140706_Pump_Product_Catalogue_View.pdf. |
Shandong Saigao Group Corporation. Q4 (5W115) Quintuplex Plunger Pump. Jinan City, Shandong Province, China: Saigao. Oct. 20, 2014. https://www.saigaogroup.com/product/q400-5w115-quintuplex-plunger-pump.html. |
Marine Turbine. Turbine Powered Frac Units. Franklin, Louisiana: Marine Turbine Technologies, 2020. |
Rotating Right. Quintuplex Power Pump Model Q700. Edmonton, Alberta, Canada: Weatherford International Ltd. https://www.rotatingright.com/pdf/weatherford/RR%2026-Weatherford%20Model%20Q700.pdf, 2021. |
CanDyne Pump Services, Inc. Weatherford Q700 Pump. Calgary, Alberta, Canada: CanDyne Pump Services. Aug. 15, 2015. http://candyne.com/wp-content/uploads/2014/10/181905-94921.q700-quintuplex-pump.pdf. |
Arop, Julius Bankong. Geomechanical review of hydraulic fracturing technology. Thesis (M. Eng.). Cambridge, MA: Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering. Oct. 29, 2013. https://dspace.mit.edu/handle/1721.1/82176. |
Number | Date | Country | |
---|---|---|---|
20220236136 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
62704401 | May 2020 | US | |
62900100 | Sep 2019 | US | |
62900112 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15929708 | May 2020 | US |
Child | 17717370 | US |