The present disclosure relates to fuel containers, and more particularly relates to portable fuel containers, features for dispensing the contents of a fuel container, and related methods of operating a fuel container to dispense the contents of the fuel container.
Portable containers for transporting liquid fuel such as gasoline provide a convenient way of replenishing expended fuels in devices that require periodic fueling (e.g., lawnmowers, vehicles, generators, etc.). Portable liquid fuel containers (e.g., gas cans) are commonly made of plastic and include a removable nozzle that connects to a fill opening of the container. The gas can is usually tipped to pour the fuel out of the nozzle. An air inlet is sometimes provided along the top side of the gas can to equalize pressure within the gas can for improved outflow of fuel through the nozzle.
Controlling the flow rate and the amount of fuel dispensed from the gas can be difficult, and is highly dependent on the tilt angle of the gas can, the amount of fuel contained in the gas can, a size of the nozzle opening, and the rate of air flow into the gas can during dispensing. As a result of these many variables, the vehicle or equipment being filled by the gas may be overfilled. Once fluid flow is set in motion, excess fluid readily collects and moves through the nozzle. Consequently, a rapid movement of the gas can to a non-dispensing position to stop the fluid flow sometimes fails to correct an overfill. Fluid overflows are hazardous, wasteful and may damage the environment and equipment upon which the fluid spills.
One aspect of the present disclosure relates to a fuel container that includes a container, a spout, an outlet valve, an air intake valve, and an actuator. The container has a top end portion and a bottom end portion, and defines a hollow interior. The spout is coupled to the container at the bottom end portion of the container. The outlet valve is positioned at the bottom end portion and operable to control fluid flow into the spout. The air intake valve is positioned at the top end portion of the container. The actuator is operable to open both the outlet valve and the air intake valve.
The actuator may be operable to concurrently open the outlet valve and the air intake valve. The outlet valve may include a stopper plug that moves between a first position sealing closed a fluid path between the hollow interior and the spout, and a second position permitting fluid flow between the hollow interior and the spout. The spout may be rotatable from a retracted position to an extended position relative to the container. The container may also include a fluid channel position in the hollow interior and coupled in fluid communication with the spout. The outlet valve may control fluid flow into the fluid channel.
The container may also include a flow valve rod coupled between the air intake valve and the outlet valve. Operation of the air intake valve with the actuator moves the flow valve rod to operate the outlet valve. At least one of the air intake valve and the outlet valve may be mounted directly to the flow valve rod. The flow valve rod may be positioned within the hollow interior. The outlet valve may be biased into a closed position. The container may include a handle portion positioned at the top end portion of the container, and the actuator is operable at a location adjacent to the handle portion.
Another aspect of the present disclosure relates to a fuel storage device that includes a container, an air intake valve, an air outlet valve, and a flow valve rod. The air intake valve is coupled in fluid communication with a source of air and operable to control air flow into the container. The outlet valve is in fluid communication with a volume of fluid carried in the container and operable to control fluid flow out of the container. The flow valve rod is connected to the air intake valve and the outlet valve. Operating the flow valve rod concurrently operates the air intake valve and the outlet valve.
The fuel storage device may also include an actuator connected to the air intake valve, wherein operating the actuator to open and close the air intake valve causes the flow valve rod to open and close the outlet valve. The fuel storage device may also include a spout coupled in fluid communication with the outlet valve. A spout valve may be positioned between the outlet valve and the spout. The spout valve may be operable between open and closed positions as the spout is moved between a dispense position and a stowed position. The outlet valve may be positioned at a bottom end portion of the container and the air intake valve may be positioned at a top end portion of the container. The air intake valve, the flow valve rod and the outlet valve may be positioned within the container.
A further aspect of the present disclosure relates to a method of operating a fuel container assembly. The method includes providing an air intake valve, an outlet valve, a valve actuator, and a container configured to hold a volume of fuel. The method includes opening the air intake valve with the actuator to provide a supply of air into the container, and opening the outlet valve with the actuator to permit exit of the volume of fuel from the container.
Opening the air intake valve and the outlet valve may occur concurrently. The method may also include providing a spout coupled in fluid communication with the outlet opening, wherein the spout is connected to the container at a bottom end portion of the container and is pivotal relative to the container. The method may also include providing a spout valve positioned between the outlet opening and an outlet opening of the spout, wherein the spout valve is operable between open and closed positions as the spouts pivots between a dispense position and a stowed position.
The foregoing and other features, utilities and advantages of the invention will become apparent from the following detailed description of the invention with reference to the accompanying drawings.
The accompanying drawings illustrate various embodiments and are a part of the specification. The illustrated embodiments are mainly examples and do not limit the claims.
The present disclosure relates to a fuel container and related methods of operating a fuel container. The fuel containers disclosed herein are typically handheld, portable containers often referred to as gas cans. Although the example fuel containers disclosed herein are of the type that may be moved and carried by a single user, the principals disclosed herein may be applicable to other types of containers, such as containers that are much larger and intended to remain stationary, or containers intended to hold other types of fluids besides liquid fuel.
Dispensing fuel from a fuel container typically requires some control of fluid flow (e.g., the flow of liquid fuel) out of the container and some control of air intake into the container that helps maintain a pressure condition that permits the dispensing of the fluid contained in the fuel container. The example fuel containers disclosed herein may provide control of the fluid dispensing and air intake in a convenient, simple, and easy-to-use manner. In one example, the fluid dispensing and air intake are controlled by separate valve members that are operable with a single actuator. The actuator, when operated, may concurrently open and close both a fluid output valve and an air intake valve. Typically, the air intake valve is positioned at a top end of the container above a fluid (e.g., liquid) level within the fuel container, and the fluid outlet valve is positioned at a bottom end of the fuel container to have maximum exposure to the fluid held in the fuel container.
The example fuel containers disclosed herein may also include an outlet spout. The outlet spout may be coupled in fluid communication with the fluid outlet valve. The spout may be movable between a dispense position and a stowed position. A spout valve may be positioned in a flow channel between the spout and the fluid outlet valve. The spout valve may be operable between open and closed positions as the spout is moved between dispense and stowed positions. The spout valve may provide additional control of fluid flow out of the fuel container (e.g., prevent fluid flow out of the spout until the spout is moved into the dispense position).
The fuel container may include a housing or container structure to which the actuator, air intake valve, fluid outlet valve, spout, and other features are mounted to or carried by. The container may be configured to hold the spout in a stowed position. The container may also include a handle to improve ease in handling or carrying the fuel container device. The container may also include a fill opening and associated cap used to fill the fuel container. The actuator, air intake valve, fluid outlet valve, spout, and spout valve may be positioned and operable separate from the fill opening.
Referring now to
The actuator assembly 22 is accessible on an exterior of the container 12, such as, for example, at a top end of the container 12 adjacent to a handle of the container. In one embodiment, the actuator assembly 22 is positioned for operation by a user, for example, using the user's thumb of one hand while the fingers of that same hand are grasping the handle feature of the container 12. This one hand operation capability for operating the actuator assembly 22 may permit the user to perform other functions with an opposite hand such as, for example, directing a position of the spout 20 or preparing a separate container to be filled with fuel from the fuel container device 10.
Referring now to
The container 12 may also include a handle portion 44, a cap 48 that provides access to a fill opening 46 (see
The spout recess 52 may include a connector portion 58 and be configured to retain the spout 20 in a stowed position (see
The container 12 may have many different shapes and sizes such as, for example, a cylindrical shape with a generally circular or oval cross-section, or a generally cubicle shape such as the design of
Referring to
The inlet plug 64 may be configured to move into and out of contact with a tapered side surface 68 leading to the intake valve opening 62. The inlet plug 64 may have a generally cylindrical construction with a circular cross-section. The inlet plug 64 may include a plurality of sealing surfaces such as, for example, a plurality of o-ring type structures that contact the tapered side surface 68 to seal closed the intake valve opening 62. The inlet plug 64 may be connected to and carried by the actuator connector 66. The actuator connector 66 may extend vertically to provide a connection with the actuator assembly 22. Moving the actuator connector 66 vertically up and down may move the inlet plug 64 into and out of contact with the tapered side surface 68 to control air flow through the intake valve opening 62.
Referring to
Operating the outlet valve 16 may include moving the outlet plug 76 into and out of contact with the tapered surface 75 to control fluid flow through the outlet valve opening 74. In one example, the outlet plug 76 is moved vertically into and out of contact with the tapered surface 75. The outlet plug 76 may have a generally cylindrical construction with a circular cross-section. The outlet plug 76 may include a plurality of o-ring type structures. The outlet plug 76 may provide a plurality of sealing surfaces that contact the tapered surface 75 to seal closed the outlet valve opening 74. The outlet valve 16 may be operable by moving the flow valve rod assembly 18.
A valve seat 60 may be positioned within the flow channel 54 and sized to receive and interface with the flow channel valve 56 (see
The spout 20 may extend into the housing 79a,b through a spout opening 57. The flow channel valve 56 may cooperate with the spout 20 to control fluid flow through the flow channel 54 and into the spout 20. The flow channel valve 56 may be operable between a closed position and an open position upon rotation of the spout 20 between the stowed position within the spout recess 52 and a dispense position rotated out of the spout recess 52 (see
Referring again to
In some arrangements, the flow valve rod assembly 18 may include multiple rod members, biasing members, and other features that assist in, for example, delivering a flow of air to a bottom end of the container 12, biasing closed one or both of the intake valve opening 62 and outlet valve opening 74, or providing a sequential movement of the inlet plug 64 and outlet plug 76 upon operation of the actuator assembly 22.
Referring to
The outlet portion 94 may include features that assist in retaining the spout 20 in a stowed position (e.g., a recess or protrusion that interfaces with the connector portion 58 of the spout recess 52). The outlet portion 94 may include a bendable portion or other feature that helps the user direct the outlet opening 98 into a desired dispense position when dispensing the contents of the container 12. The connector portion 92 and outlet portion 94 may have a generally circular cross-section and tubular construction. The connector portion 92 and outlet portion 94 may be formed as a single, integral piece. Alternatively, the connector portion 92 and outlet portion 94 may be separately formed pieces that are assembled together in a separate step.
The flow channel valve 56 may be positioned within the connector portion 92 and may have portions that are positioned on both the interior and exterior surfaces of the connector portion 92. The flow channel valve 56 may provide a sealed interface between the connector portion 92 and the housing 79a,b.
Referring to
Applying a force to the actuation portion 108 may pivot the actuator assembly 22 about the pivot member 106 to move the actuator connector 66 in an axial direction. Moving the actuator connector 66 in an axial direction may move the inlet plug 64 and outlet plug 76 in an axial direction to control flow through the intake valve opening 62 and outlet valve opening 74, respectively. In some arrangements, the actuator assembly 22 is biased into a closed or sealed position. Applying a force to the actuation portion 108 sufficient to overcome the biasing forces may move the actuator connector 66 axially to open the intake valve opening 62 and outlet valve opening 74. In some arrangements (not shown), the actuator assembly 22 may include first and second actuation portions, wherein a first actuation portion operates the air intake valve and outlet valves into an open position, and applying a force to the second actuation portion closes the air intake valve and outlet valve.
In other arrangements, separate actuator assemblies may be used to operate each of the air intake valve 14 and outlet valve 16. The actuator assemblies may include actuators positioned at different locations on the container 12 that are spaced apart from each other. Alternatively, the actuator assemblies may include actuators that are positioned adjacent to each other for easy access and operation by an operator holding the handle portion 44 of the container 12.
In a still further embodiment, a separate actuator assembly may be used to control the flow channel valve 56 rather than having the flow channel valve 56 operate automatically by rotating the spout between stowed and dispensed positions. The flow channel valve may be positioned within the flow channel to provide a safety or secondary flow control. This flow channel valve may be operable by an actuator assembly that is also accessible along, for example, a top end of the container adjacent to the handle portion 44. In a further embodiment, a single actuator assembly may be used to operate all three of the air intake valve, outlet valve and flow channel valve either concurrently or in series or sequence. For example, an actuator assembly operated into a first position may open the air intake valve and outlet valve and operating the actuator assembly into a second position may operate the flow channel valve in a two-stage valving operation.
Referring now to
The actuator assembly 122 is accessible on an exterior of the container 112, such as, for example, at a top end of the container 112 adjacent to a handle of the container. In one embodiment, the actuator assembly 122 is positioned for operation by a user, for example, using the user's thumb of one hand while the fingers of that same hand are grasping the handle feature of the container 112. This one hand operation capability for operating the actuator assembly 122 may permit the user to perform other functions with an opposite hand such as, for example, directing a position of the spout 120 or preparing a separate container to be filled with fuel from the fuel container device 110.
Referring now to
The container 112 may also include a handle portion 144, a cap 148 that provides access to a fill opening 146 (see
The spout recess 152 may include a connector portion 158 (see
One advantage related to the example fuel container devices disclosed herein is that the container 112 does not need to be tipped forward during dispensing of the contents of the container. The valves of the fuel container device 110 control fluid flow rather than a tipping action that directs fluid through a spout that is positioned, for example, at a top end of the container (e.g., at the fill opening 146) and is exposed to fluid only upon tipping of the container. Dispensing fuel may occur by holding fuel container device 110 in an upright position, manipulating the spout 120 into a desired dispense position, and operating the actuator assembly 122 to control the fluid flow out of the container 112 through the spout 120.
Referring to
The inlet plug 164 may be configured to move into and out of contact with a tapered side surface 168 leading to the intake valve opening 162. The inlet plug 164 may have a generally cylindrical construction with a circular cross-section. The inlet plug 164 may include a plurality of sealing surfaces such as, for example, a plurality of o-ring type structures that contact the tapered side surface 168 to seal closed the intake valve opening 162. The inlet plug 164 may be connected to and carried by the actuator connector 166. The actuator connector 166 may extend vertically to provide a connection with the actuator assembly 122. Moving the actuator connector 166 vertically up and down may move the inlet plug 164 into and out of contact with the tapered side surface 168 to control air flow through the intake valve opening 162.
Referring to
Operating the outlet valve 116 may include moving the outlet plug 176 into and out of contact with the tapered surface 175 to control fluid flow through the outlet valve opening 174a,b. In one example, the outlet plug 176 is moved vertically into and out of contact with the tapered surface 175. The outlet plug 176 may have a generally cylindrical construction with a circular cross-section. The outlet plug 176 may include at least one o-ring or other sealing structure. The outlet plug 176 may provide a plurality of sealing surfaces that contact the tapered surface 175 to seal closed the outlet valve opening 174a,b. The outlet valve 116 may be operable by moving the flow valve rod assembly 118.
A valve member 160 may be positioned within the flow channel 154 and sized to receive and interface with the flow channel valve 156 (see
The spout 120 may extend into the housing 179a,b through spout opening 157a,b. The flow channel valve 156 and valve member 160 may cooperate with the spout 120 to control fluid flow through the flow channel 154 and into the spout 120. The flow channel valve 156 may be operable between a closed position and an open position upon rotation of the spout 120 between the stowed position within the spout recess 152 and a dispense position rotated out of the spout recess 152 (see
The flow channel valve 156 may be referred to as a spout valve, a second fluid control valve, or a safety valve. The flow channel valve 156 may provide a secondary control of fluid flow out of the container 112. The flow channel valve 156 may limit flow until the spout 120 is in a dispense position that is rotated out of the stowed position shown in
Referring again to
Referring to
The outlet portion 194 may include features that assist in retaining the spout 120 in a stowed position (e.g., a recess or protrusion that interfaces with the connector portion 158 of the spout recess 152). The outlet portion 194 may include a bendable portion 121 or other feature that helps the user direct the outlet opening 198 into a desired dispense position when dispensing the contents of the container 112. The connector portion 192 and outlet portion 194 may have a generally circular cross-section and tubular construction. The connector portion 192 and outlet portion 194 may be formed as a single, integral piece. Alternatively, the connector portion 192 and outlet portion 194 may be separately formed pieces that are assembled together in a separate step.
The flow channel valve 156 may be positioned within or on an exterior of the connector portion 192. The flow channel valve 156 may provide a sealed interface between the connector portion 192 and the housing 179a,b and container 112.
Referring to
Applying a force to the actuation portion 208 may pivot the actuator assembly 122 about the pivot member 206 to move the actuator connector 166 in an axial direction. Moving the actuator connector 166 in an axial direction may move the inlet plug 164 and outlet plug 176 in an axial direction to control flow through the intake valve opening 162 and outlet valve opening 174a,b, respectively. In some arrangements, the actuator assembly 122 is biased into a closed or sealed position. Applying a force to the actuation portion 108 sufficient to overcome the biasing forces may move the actuator connector 166 axially to open the intake valve opening 162 and outlet valve opening 174a,b.
While this invention has been described with reference to certain specific embodiments and examples, it will be recognized by those skilled in the art that many variations are possible without departing from the scope and spirit of this invention. The invention, as described by the claims, is intended to cover all changes and modifications of the invention which do not depart from the spirit of the invention. The words “including” and “having,” as used in the specification, including the claims, shall have the same meaning as the word “comprising.”
Number | Name | Date | Kind |
---|---|---|---|
470838 | Hart | Mar 1892 | A |
515552 | Phelps | Feb 1894 | A |
519534 | James | May 1894 | A |
521113 | Hart | Jun 1894 | A |
1283906 | Riebel | Nov 1918 | A |
1417951 | Staples et al. | May 1922 | A |
1516706 | Brookins | Nov 1924 | A |
1537399 | Wiswell | May 1925 | A |
1555176 | Allen | Sep 1925 | A |
1566716 | Wiswell | Dec 1925 | A |
1579390 | Peaden | Apr 1926 | A |
1664560 | Hughes | Apr 1928 | A |
1808029 | Frame | Jun 1931 | A |
1885472 | Paone | Nov 1932 | A |
1953200 | Thomas | Apr 1934 | A |
1959961 | Neil | May 1934 | A |
2275318 | Rasmussen | Mar 1942 | A |
2516728 | Smith | Jul 1950 | A |
2630247 | Rafferty | Mar 1953 | A |
2641385 | Rives | Jun 1953 | A |
3097674 | Allen | Jul 1963 | A |
3901417 | Schiemann | Aug 1975 | A |
3915357 | Zehr | Oct 1975 | A |
4069946 | Flider | Jan 1978 | A |
4125207 | Ernst et al. | Nov 1978 | A |
4236655 | Humphries | Dec 1980 | A |
4834270 | Messner | May 1989 | A |
5277343 | Parsonage | Jan 1994 | A |
5472124 | Martushev | Dec 1995 | A |
5597097 | Morris | Jan 1997 | A |
5671868 | Herr | Sep 1997 | A |
5850949 | Koerbel et al. | Dec 1998 | A |
6003735 | Strecker | Dec 1999 | A |
6045013 | Yang | Apr 2000 | A |
6702160 | Griffith | Mar 2004 | B1 |
6983868 | Harris | Jan 2006 | B1 |
7086548 | Bartlett | Aug 2006 | B2 |
7357279 | Kuo | Apr 2008 | B2 |
7513394 | Bone | Apr 2009 | B2 |
7802704 | Hatch et al. | Sep 2010 | B2 |
7854357 | Hill | Dec 2010 | B2 |
20090032556 | Zwahlen | Feb 2009 | A1 |
20090045226 | Munlin | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
10 2007 061 536 | Jul 2009 | DE |
0 974 525 | Jan 2000 | EP |
2 306 151 | Apr 1997 | GB |
2470574 | Jan 2010 | GB |
2010100484 | Oct 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20130068800 A1 | Mar 2013 | US |