None.
The present invention relates to a fuel injection system and valve body assemblies. More specifically, the present invention relates to a fuel injection servo system for an aircraft engine and improved valve assemblies related thereto.
Fuel injection systems have replaced carburetors in most modern aircraft engines. Presently, fuel injection systems provide greater performance, economy, and reliability relative to their carburetor counterparts.
Most prior art fuel injection systems used in aircraft engines are volume-air flow type systems, which are based on the principle of measuring air flow to establish correct fuel flow to the engine cylinders. These systems include a throttle body fuel injection servo which measures the amount of air moving past the throttle by use of a venturi. An in-line diaphragm type flow regulator then converts the air pressure from the venturi into a proportional fuel pressure. During normal operation of the aircraft engine, the position of the throttle controls the air flow through the fuel injection servo or to the regulator, which then controls the flow of fuel to the cylinders. The servo is the primary component used in the fuel injection system and performs all functions required to establish fuel flow volumes. The regulated fuel flow from the servo is sent to a fuel flow divider, which divides the steady stream of fuel into smaller streams of fuel, one for each cylinder. Fuel lines carry fuel from the divider to injector nozzles located in the intake ports of each cylinder. The injectors supply fuel to the intake manifold. Fuel then enters the cylinders from the intake manifold under the low pressure created in the cylinder during the intake cycle.
During normal operation of the aircraft engine, the position of the throttle and the air flowing through the fuel injection servo or flow regulator controls the flow of fuel to the cylinders of the aircraft engine. As the throttle is opened, more fuel is delivered to each cylinder, resulting in an increase in the speed of the engine or in manifold pressure, and thus more power being generated by the engine. Generally, most fuel injection servos include an air passage mechanism (i.e., the throttle body), a fuel pressure modifying mechanism (i.e., the valve assembly), and a fuel regulator assembly.
The valve assembly (i.e., fuel pressure modifying mechanism) receives fuel from a fuel supply and delivers the fuel at a pressure that is different from the fuel supply to the fuel regulator assembly. Some of the major components of valve assembly include an idle valve assembly and a mixture valve assembly. The mixture valve assembly as shown in
The traditional mixture control assembly is shown in
The idle valve assembly shown in
The idle valve assembly shown in
The spring load imposed on the discs creates a load on the shaft tending to push in a direction towards outside of the servo housing. Various efforts have been made to alleviate the friction associated with the discs and other components. For example, polymer thrust washers have been employed for years and are sufficiently durable, but do not reduce friction as is desired. Teflon washers are also utilized, but friction remains.
The friction and stiffness resulting from the spring-load bearing washer system (“thrust washers”) results in throttle friction. Such stiffness has also led to ‘jumpy’ control settings. Worse, microscopic wear particles thought to be generated from the thrust washers may coalesce with certain constituents (or contamination) in the aviation gasoline found in various regions around the world, particularly the south Asia region. These particles are purported to form particle aggregations that flow downstream, contaminating the fuel system.
The spring tension and size, coupled with the clip(s) (e.g., c-clip), washers, and other components leave little room for modifications, particularly where such componentry has long been approved by the Federal Aviation Administration.
A fuel injection system which avoids the shortcomings attendant with the prior art devices and practices utilized heretofore is the subject matter of the present application. The throttle control lever is mechanically linked to a valve which controls fuel to the engine when the throttle is at or very near closed (idle). In various fuel injection servo systems, when the throttle is moved, the idle valve moves. It is often in the idle valve assembly that the high friction affecting throttle movement occurs.
It should be appreciated that this Summary is provided to introduce a selection of concepts in a simplified form, the concepts being further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of this disclosure, nor is it intended to limit the scope of the invention.
The present invention dramatically reduces the friction in the throttle and mixture control lever systems, and eliminates the need for polymer or Teflon thrust washers in the fuel injector servo that can be a source of foreign particles that can interact with other materials and contaminate the system.
In some embodiments, a fuel mixture control assembly is disclosed including a shaft, a stop bracket adapted to be secured on one end of the shaft, a spring arranged over a portion of the shaft, a spring retainer adapted to retain a first end of the spring opposite the stop bracket, a retainer assembly, and a bearing assembly arranged between the spring retainer and the retainer assembly.
In some embodiments, an idle fuel control assembly is disclosed including a shaft, a bracket adapted to be secured on one end of the shaft, an idle valve member rotationally engaged about the shaft, a retainer assembly, and a bearing assembly arranged adjacent the retainer assembly and the idle valve member.
The present invention will now be described more fully hereinafter with reference to the accompanying figures, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout. In the figures, certain components or features may be exaggerated for clarity, and broken lines may illustrate optional features or elements unless specified otherwise. In addition, the sequence of operations (or steps) is not limited to the order presented in the figures and/or claims unless specifically indicated otherwise. Features described with respect to one figure or embodiment can be associated with another embodiment or figure although not specifically described or shown as such.
It will be understood that when a feature or element is referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
As used herein, phrases such as “between X and Y” and “between about X and Y” should be interpreted to include X and Y. As used herein, phrases such as “between about X and Y” mean “between about X and about Y.” As used herein, phrases such as “from about X to Y” mean “from about X to about Y.”
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation depicted in the figures.
It will be understood that although the terms first and second are used herein to describe various features or elements, these features or elements should not be limited by these terms. These terms are only used to distinguish one feature or element from another feature or element. Thus, a first feature or element discussed below could be termed a second feature or element, and similarly, a second feature or element discussed below could be termed a first feature or element without departing from the teachings of the present invention.
Unless otherwise defined, all terms (including technical and scientific terms) and phrases used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein. Well-known functions or constructions may not be described in detail for brevity and/or clarity.
The term “about”, as used herein with respect to a value or number, means that the value or number can vary by +/− twenty percent (20%). The terms “about,” “somewhat,” etc., with respect to structural or functional inter-relations apart from values or numbers are used to convey that an absolute inter-relation is not required, so as the elements satisfy the described purpose within such inter-relation.
Conventionally, as noted above, the frictional engagement inside the valve assembly of the washers, clips and bushings retained in place by the shaft and spring, impart minimal room for additions or modifications. In some embodiments of the present invention, a ball bearing assembly is included with a shortened spring that is comparably as strong as the prior art springs.
In some embodiments, the cross-sectional design of the spring retainer 50 has a distinctive cross-sectional design. In some embodiments, the spring retainer 50 is includes a rounded insert 51 sized to extend into at least a portion of the internal circumference of the spring. In some embodiments, the spring retainer 50 includes a shelf 52 on one end of the spring retainer 50 including a circumference sized to accommodate and retain the spring. In some embodiments, the shelf 52 is rounded and of a circumference generally at or near the exterior circumference of the spring 54 (and of greater circumference than the insert 51). Opposite the rounded insert 51, the spring retainer 50 includes a flat surface 53 (extending along the shelf 52) for meeting the ball bearing assembly 61.
The ball bearing assembly 61 in some embodiments includes a baring cage 63 with one or more balls 62 (e.g., stainless steel) sized to fit within ball-sized spaces in the cage 63. The ball bearing assembly 61 substantially reduces or eliminates friction in the operation of the mixture control assembly 55, thereby reducing ‘jumpy’ control settings and/or foreign particle generation.
In some embodiments, a washer retainer 56, includes a flat surface 65 for meeting the ball bearing assembly 61 opposite the spring retainer 50. Opposite the flat surface 65, the washer retainer 56 includes a seat 66 sized to fit a washer 57 (e.g., C-washer) that may lock into place along the shaft 59 opposite the bushing 58. The washer retainer 56 may also include a lip 67 to aid in retaining the washer 57.
In some embodiments, the bushing(s) may be consistent in size with prior devices. In some embodiments, the bushing may be reduced in size to reduce the amount of change in size required of the spring. The spring 54 may be reduced in size (e.g., from 0.854 inch. to 0.684 inch.), while the strength increased to accommodate the reduction in size.
A number of tests have been performed to evaluate the various improvements and effectiveness of certain embodiments of the presently disclosed ball bearing assembly for use in the idle valve assembly and/or fuel mixture assembly. Included herein below are two types of tests performed and their corresponding test results. In particular, included below are the methodology and results of various rotation torque tests and a Life Cycle Test.
The testing described hereinbelow was conducted using the RSA® series fuel injection servos manufactured by Precision Airmotive, LLC. The Teflon washers tested were Precision Airmotive part numbers 367757 and 2538330, respectively.
Rotation Torque Tests:
The force required to initiate movement of the mixture control lever and idle lever of RSA® servos, respectively, were carefully measured using both the Teflon washer assembly of the prior art and an embodiment of the presently disclosed ball bearing assembly. The results were then compared to evaluate the effectiveness of certain embodiments of the presently disclosed ball bearing assemblies. Two different rotational torque tests were conducted: a test measuring the force required to initiate movement of the idle lever and mixture control lever in a full servo application, and a modified configuration with certain components removed so as to vary the amount of force on the Teflon washer or ball bearing assembly and measure the required rotational force under different compression/spring loads.
First, the mixture control and idle lever assemblies were built up with their appropriate Teflon washers and installed into a servo body (valve area) with no fuel. The force required to initiate movement of the mixture control lever and idle lever, respectively, was then measured using this traditional configuration. The idle lever assembly was rotational torque tested with idle linkage lever part no. 2523299. The mixture control lever assemblies were tested with linkage lever part no. 2520672.
The mixture control lever and idle lever were then removed, and the respective assemblies converted to an embodiment of the presently disclosed valve system comprising ball bearing assemblies. The levers were then reattached and each tested in the same manner.
Table 1 contains the first test result data of the Rotation Torque Tests. The forces noted in Table 1 relate to all the components that rotate against each other when installed in a servo. Only a portion of the force is related to the friction between the Teflon thrust washer and the components that are pressed up against it. The same applies to the assemblies that were converted to use an embodiment of the thrust ball bearing assembly disclosed herein. In normal operation, the force applied to the thrust washers (or a ball bearing assembly used in place of the thrust washer assembly) is approximately 21 pounds. As Table 1 illustrates, significantly less force is required in the valve systems that include embodiments of the presently disclosed ball bearing assembly, resulting in significantly better control and operation of the valve systems.
To isolate how much friction is being imposed on the Teflon washer assembly or the replacement ball bearing assembly, a second test was performed with all items between the two arrows noted as “components” in
Table 2 contains the test result data. As illustrated, the exemplary ball bearing assembly presently disclosed herein resulted in significant reductions in friction regardless of the amount of force imparted on the system.
Rotational Torque Test Summary:
Both types of tests show that the exemplary embodiment of the presently disclosed ball bearing assembly can reduce the amount of force required to initiate rotational movement compared to that of the Teflon washer assembly in the prior art. When the idle lever assembly was loaded with various weights, the ability of the tested ball bearing assembly to outperform the Teflon washer assembly was apparent. The unique design of the bushings, reduced spring, and etched stainless steel thrust washers, in various embodiments, all work to ease resistance in operation, thereby providing various advantages in the system. These advantages include, among other things, maintaining the components in place, limiting vibration, matching the width specs of the prior art designs, and providing sufficient spring tension necessary to keep the components secured.
Life Cycle Testing
Life cycle testing was also performed on the prior version of the system and then compared to an improved version employing certain embodiments of the presently disclosed ball bearing assembly. Tests were conducted using two RSA-5DA1™ servos with fully functional regulators and valve sections. Other test components included:
a) Two test fluids: Stoddard per Mil-PRF-7024 type II and Avgas 100LL;
b) Electric motors and linkage for cycling idle lever and mixture control levers;
c) Flow bench with fuel lines, fuel pump, flow meters, pressure gauges, etc.;
d) Idle lever assembly in stock configuration and idle lever assembly with ball bearing; and
e) Mixture control lever assembly in stock configuration and mixture control lever assembly with ball bearing.
Description of Testing:
Two RSA-5AD1™ servos with operational regulators and valve areas were used for cycle testing both the mixture control lever and idle lever assemblies. An electric motor with special linkage and bracket were attached to each servo. The electric motor and linkage allowed the lever assemblies to be cycled back and forth, as they would be on an aircraft. The servos were plumbed into a flow bench. During the day, test fluid was run through the units. At night, the fluid pump was turned off. The test fluid that was in the servos after shutting off the fluid pump remained in the units during overnight testing.
The cycle rate at which the test lever assemblies were rotated through their full range of motion was 2.5 Hz. This rate is substantially higher than the rate at which the levers would normally be operated on the aircraft. For example, a pilot might move a lever 60 times in an hour, and only occasionally during operation would the levers would be moved through their full range of motion. The cycle rate of 2.5 Hz was therefore more stressful to the components located in the servo's valve area relative to normal operation. The idle and mixture control lever assemblies were removed from the servo's valve area periodically and inspected for wear.
Testing occurred throughout the night with the test fluid remaining stagnate in the servo. This allowed wear particles to build up in the servo's valve area. This was desirable because it further taxed the normal wear surfaces beyond their normal use.
Findings:
Numerous components in the servo's valve area rotate against each other when the idle lever and mixture lever are moved. During testing, these components were removed at various time intervals to inspect for wear. As one example, the amount of wear was compared to the same components taken out of servo cores that were sent in for overhaul. It was found that 2,000,000 test cycles created wear that was indicative of servos that met the Time Between Overhaul (TBO) specifications, thereby demonstrating the improved functionality of various embodiments of the presently disclosed valve system having ball bearing assemblies included therein.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application is a Continuation of U.S. patent application Ser. No. 15/152,155 filed May 11, 2016, which is a Continuation in Part of U.S. patent application Ser. No. 15/099,043 filed Apr. 14, 2016, which claims priority to U.S. Provisional Patent Application 62/147,042, filed Apr. 14, 2015, all of which are fully incorporated herein by reference. This application also claims priority to U.S. Provisional Patent Application No. 62/159,959 filed May 11, 2015, which is fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62147042 | Apr 2015 | US | |
62159959 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15152155 | May 2016 | US |
Child | 16248860 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15099043 | Apr 2016 | US |
Child | 15152155 | US |