Fuel delivery systems may include a number of pumps, such as a lower pressure pump and a higher pressure pump in order to deliver fuel at a high pressure to the cylinders, such as for gasoline direct injection. Highly pressurized fuel in the fuel delivery system may be particularly useful during crank and other times during engine operation for efficient combustion, etc.
Leaks in the fuel delivery system may substantially decrease the fuel pressure in the fuel delivery system, thereby leading to extended crank times due to incomplete or inefficient combustion, for example. Extended crank times in turn may increase emissions and/or cause cylinder misfires.
In one example, U.S. Pat. No. 5,715,786 attempts to detect leaks in the fuel delivery system by monitoring the pressure in the fuel delivery system in response to a predeterminable operating state, such as overrunning. After a predeterminable operating state has been detected, the device assesses whether or not the fuel injectors have malfunctioned (i.e. whether an injector is stuck open and leaking fuel). A malfunction of one or more of the fuel injectors may be determined by comparing predeterminable pressure values to measured pressure values. The device may then take actions to mitigate fuel leak effects on the system, such as shutting down the engine or turning off the high pressure pump.
The inventor herein has recognized several disadvantages with this approach. First, internal and external leaks may not be differentiated in U.S. Pat. No. 5,715,786. An internal leak may include a fuel leak that occurs through various components in the fuel delivery system. For example, at high pressure during engine shut-down fuel may leak back through a pump, where the aforementioned leak can be classified as an internal leak. However, external leaks may include fuel leaks that leak out of various components in the fuel delivery system, exposing pressurized fuel to atmospheric pressure. For example, a fuel line may degrade and a hole may develop in a portion of the fuel line, substantially decreasing the pressure in the fuel delivery system and in some cases rendering the fuel delivery system inoperable, where the aforementioned type of leak can be classified as an external leak. An external leak may also include a leak through the fuel injectors.
One approach includes a method for operation of a fuel delivery system in an internal combustion engine including a lower pressure pump, a higher pressure pump fluidly coupled downstream of the lower pressure pump, and a fuel rail fluidly coupled downstream of the high pressure pump including, initiating a mitigating action based on a fuel rail pressure response, the fuel rail pressure response occurring after an engine shut-down, where the mitigating action includes disabling vehicle operation if fuel rail pressure drops below a threshold value after activation of one of the pumps, the activation occurring before a subsequent engine start, the subsequent engine start occurring after the engine shut-down, and where the mitigating action includes adjusting operation of one of the pumps during the subsequent engine start if fuel rail pressure achieves at least the threshold value during the activation.
Another approach includes a method for operation of a fuel delivery system in an internal combustion engine having a fuel system including a lower pressure pump, a higher pressure pump fluidly coupled downstream of the lower pressure pump, a solenoid valve coupled between the higher and lower pressure pumps, and a fuel rail fluidly coupled downstream of the high pressure pump comprising: indicating a fuel system leak based on a fuel rail pressure response, the fuel rail pressure response occurring after an engine shut-down; in response to the indication and before a subsequent engine start, the subsequent engine start occurring after the engine shut-down, adjusting the solenoid valve; differentiating whether the leak includes an internal or external leak based on fuel pressure response occurring after the solenoid valve is adjusted
In these ways, a distinction can be made between internal and external leaks, for example, allowing the mitigating action taken to be adjusted accordingly. In particular, the presence of either type of leak may be accurately obtained after an engine shutdown to reduce interference from engine operation. Then, different types of leaks may be accurately distinguished before a subsequent engine start due to the particular configuration of the system by monitoring the fuel rail pressure. Similarly, different types of leaks may be accurately distinguished by appropriate control of a valve in the fuel system that assists in isolating the leak source.
Combustion chamber 30 may receive intake air from intake manifold 44 via intake passage 42 and may exhaust combustion gases via exhaust passage 48. Intake manifold 44 and exhaust passage 48 can selectively communicate with combustion chamber 30 via respective intake valve 52 and exhaust valve 54. In some embodiments, combustion chamber 30 may include two or more intake valves and/or two or more exhaust valves.
Intake valve 52 may be controlled by controller 12 via electric valve actuator (EVA) 51. Similarly, exhaust valve 54 may be controlled by controller 12 via EVA 53. During some conditions, controller 12 may vary the signals provided to actuators 51 and 53 to control the opening and closing of the respective intake and exhaust valves. The position of intake valve 52 and exhaust valve 54 may be determined by valve position sensors 55 and 57, respectively. In alternative embodiments, one or more of the intake and exhaust valves may be actuated by one or more cams, and may utilize one or more of cam profile switching (CPS), variable cam timing (VCT), variable valve timing (VVT) and/or variable valve lift (VVL) systems to vary valve operation. For example, cylinder 30 may alternatively include an intake valve controlled via electric valve actuation and an exhaust valve controlled via cam actuation including CPS and/or VCT.
Fuel injector 66 is shown coupled directly to combustion chamber 30 for injecting fuel directly therein in proportion to the pulse width of signal FPW received from controller 12 via electronic driver 68. In this manner, fuel injector 66 provides what is known as direct injection of fuel into combustion chamber 30. The fuel injector may be mounted in the side of the combustion chamber or in the top of the combustion chamber, for example. Fuel may be delivered to fuel injector 66 by a fuel system, shown in
Ignition system 88 can provide an ignition spark to combustion chamber 30 via spark plug 92 in response to spark advance signal SA from controller 12, under select operating modes. Though spark ignition components are shown, in some embodiments, combustion chamber 30 or one or more other combustion chambers of engine 10 may be operated in a compression ignition mode, with or without an ignition spark.
Exhaust gas sensor 126 is shown coupled to exhaust passage 48. Sensor 126 may be any suitable sensor for providing an indication of exhaust gas air/fuel ratio such as a linear oxygen sensor or UEGO (universal or wide-range exhaust gas oxygen), a two-state oxygen sensor or EGO, a HEGO (heated EGO), a NOx, HC, or CO sensor.
Controller 12 is shown in
As described above,
Furthermore, the lower pressure pump may increase the downstream pressure in the fuel delivery system. The lower pressure pump may be fluidly coupled to a check valve 216, represented by the standard ball and spring symbol, by fuel line 218. Check valve 216 allows fuel to travel downstream, under some conditions, and impedes fuel from traveling upstream when there is a sufficient pressure differential. In another example, other suitable valves may be used that can impede fluid from traveling upstream into the fuel tank. Check valve 216 may be fluidly coupled to a fuel filter 220 by a fuel line 222. The fuel filter may remove unwanted particles from the fuel in the fuel line. A fuel pressure regulator 224 may be coupled to fuel line 225. The fuel pressure regulator may regulate the pressure of downstream components while impeding the amount of fuel that may be re-circulated back into the fuel tank. The characteristics of an exemplary fuel pressure regulator are shown in
Again referring to
A higher pressure pump 230 may be coupled downstream of the fuel pressure accumulator 226 by a fuel line 232. In this example, the higher pressure fuel pump is mechanically actuated positive displacement pump that includes a piston 234, a cylinder 235, and a cam 236. The higher pressure pump may use mechanical energy, produced by the engine, for actuation. In other examples, the higher pressure pump may be another suitable pump such as an electronically actuated pump.
A check valve 238 may be coupled downstream of the higher pressure pump by fuel line 240. Bypass fuel line 242 may be coupled directly upstream and downstream of check valve 238. The bypass fuel line may contain a pressure relief valve 244. In this example, pressure relief valve 244 is a check valve, represented by the industry standard ball and spring. In other examples, pressure relief valve may be another suitable valve which prevents the pressure downstream of valve 244 from becoming too high and possibly damaging downstream components as well as impedes fuel from traveling upstream under some conditions. In some examples, check valve 238 and bypass fuel line 242 may be referred to as a parallel port pressure relief valve PPRV 246.
A fuel rail 250 may be coupled to the parallel port pressure relief valve 246 by fuel line 248. A pressure sensor 252 may be coupled to the fuel rail. The pressure sensor may be electronically coupled to controller 12. Furthermore, the pressure sensor may measure the pressure of the fuel in the fuel rail. In other examples, the pressure sensor may be coupled to another location in the fuel delivery system downstream of the higher pressure pump. In some examples, a temperature sensor (not shown) may be coupled to the fuel rail. The temperature sensor may measure the temperature of the fuel rail. The fuel rail may be fluidly coupled to a series of fuel injectors 254. The fuel injectors may delivery fuel to the engine 10. Several diagnostic algorithms that may be implemented on the fuel delivery system, shown in
The diagnostic methods, shown in
In some examples, the fuel delivery system diagnostic routine 300 may reduce damage to engine components by inhibiting operation of the engine when the fuel delivery system is experiencing sufficiently large external leaks. Additionally, the routine may take various mitigating actions in response to an internal leak.
An internal leak may include leaks upstream through various components in the fuel delivery system. For example, the fuel may leak back through the higher pressure pump after engine shut down, due to an increase in temperature of the fuel delivery system. However, external leaks may include fuel leaks that leak out of various components in the fuel delivery system, exposing pressurized fuel to atmospheric pressure, such as through the injectors.
At 312, the first leak detection algorithm is implemented, to determine if the fuel delivery system is experiencing one or more leaks. In some examples, the first leak detection algorithm may be method 400, discussed in greater detail herein. In other examples, other suitable leak detection algorithms may be used to determine if the fuel delivery system is experiencing one or more leaks during a key-off condition. If the first leak detection algorithm detects a leak, a diagnostic code may be set in controller 12 that is readable by a code reader.
The routine then advances to 314, where it is determined if the first leak detection algorithm indicates one or more leaks in the fuel delivery system.
If it is determined that no leak indication has been made, the routine ends. However, if it is indicated by the first leak detection algorithm that the fuel delivery system is experiencing one or more leaks, the routine advances to 316 where a second leak detection algorithm is implemented. In some examples, the second leak detection algorithm may include the leak detection algorithm illustrated in
The routine then proceeds to 318, where the type of leak that the fuel delivery system experiencing is determined. If it is determined that the fuel delivery system is experiencing an external leak, the routine advances to 320, where an indication is made that an external leak is present. An external leak may include fuel leaking out of various components in the fuel delivery system, exposing pressurized fuel to atmospheric pressure. For example, a fuel line may degrade and a hole may develop in a portion of the fuel line, substantially decreasing the pressure in the fuel delivery system and in some cases rendering the fuel delivery system inoperable.
The external leak indication may include sending an external indication on a Computer Area Network (CAN) and storing the indication in RAM. Furthermore, when an indication is made that an external leak is present, a code may be set in controller 12 that is readable by a code reader, the code indicating an external leak. The routine then advances to 322 where mitigating action(s) are taken. The mitigating actions include: disabling operation of the engine and/or vehicle, adjusting the operation of one or more pump, and various others. Adjusting operation of one or more pumps includes disabling operation of one or more pumps. After 322 the routine ends.
However, if the fuel delivery system is experiencing an internal leak, the routine advances to 324, where an indication is made that an internal leak is present. The internal leak indication may include sending an internal leak indication on the CAN and storing the indication in RAM. Furthermore, when an indication is made that an internal leak is present, a code indicating an internal leak may be set in controller 12 that is readable by a code reader. Then, the routine advances to 326, where mitigating action(s) are taken. The mitigating actions include: adjusting operation of one or more pumps, adjusting injection profile and/or timing, disabling on or more of the pumps, as well as various others. Then, after 326 the routine ends.
Again referring to
Next, the algorithm proceeds to 414, where it is determined if operation of the engine has stopped. The determination may be based on various operating conditions, such as: key position, door position, valve position, engine speed, and various others. If operation of the engine has not stopped, the routine returns to the start. In other examples, the algorithm may end if operation of the engine has not stopped.
However, if the operation of the engine has stopped, the algorithm proceeds to 416, where the fuel pressure downstream of the higher pressure pump is repeatedly measured, along with the temperature of the engine and/or fuel delivery.
The algorithm then proceeds to 418, where two or more substantially concurrent pressure and temperature measurements are stored. The pressure measurements may be taken downstream of the higher pressure pump. The temperature measurements include temperature of the engine and/or fuel delivery system. In some examples, the pressure and temperature measurements are taken at predetermined times. In other examples, the pressure and temperature measurements are taken once predetermined pressures and/or temperatures are reached (e.g., the pressure measurement is taken once a specified temperature is reached). An example of such measurements is described with regard to
Again referring to
Mass Loss=V*ρ[(P2−P1)*K+(T2−T1)*C] (1)
In other examples, another approach for calculating the change in mass of the fuel in the fuel delivery system, downstream of the high pressure pump, may be used.
The algorithm then proceeds to 422, where it is determined if the change in the mass of the fuel, in the fuel delivery system, is above a threshold value. For example, the routine determines if the fuel delivery system is experiencing a leak(s). The threshold value may take into account various parameters such as temperature and pressure of the fuel delivery system, precision of the pressure and temperature sensors, uncertainty in the mass loss calculation, compliance of the fuel delivery system, as well as various others. The threshold value may be a predetermined value or may be calculated during each execution of the algorithm 400. Alternatively, it may be determined if the mass flowrate, volume loss, and/or volumetric flowrate is above a threshold value.
If the change in mass of the fuel is not above a threshold value, the algorithm ends. However, if the change in mass of the fuel is above a threshold value, an indication is made that the fuel delivery system is experiencing a leak(s) at 424. After 424 the algorithm ends.
At 512 it is determined if the first leak detection algorithm indicates a leak. If the first leak detection algorithm indicates that the fuel delivery system is not experiencing a leak, the method ends. In other examples, method 500 may return to the start of routine 300.
However, if the first leak detection algorithm indicates that the fuel delivery system is experiencing a leak, the method advances to 514, where it is determined if an action has been performed by a vehicle operator that may indicate ignition of the vehicle is likely to occur shortly after the action is performed. The aforementioned actions include: opening the door, rotating the steering wheel, unlocking the door(s), and various others. In an additional example, the initiation of ignition may be delayed for a specified amount of time, allowing the second leak detection algorithm to be implemented before ignition of the engine. If an action is not performed that may indicate that ignition of the vehicle is likely to occur shortly after the action is performed, the method returns to 514. In some examples, the method may wait for a predetermined time before returning to 514.
However, if an action is performed that may indicate that ignition of the vehicle is likely to occur shortly after the action is performed, the method advances to 516 where the lower pressure pump is activated and then subsequently deactivated. In this way, the lower pressure pump may be adjusted based on two or more substantially concurrent pressure and temperature measurements. In one example, the lower pressure pump may be activated for one to two seconds, and then deactivated. In other examples, the time that the lift pump is activated may be adjusted based on operating conditions. Yet in other examples, another pump may be activated and then deactivated. Additionally, the pressure downstream of the higher pressure pump may be measured between 514 and step 516, such as two or more pressure measurements of the fuel rail.
Next the method advances to 518 where the method waits for a predetermined period of time. Then, the method advances to 520, where it is determined if vehicle ignition has been initiated. Initiation of vehicle ignition may include rotation of an ignition key, actuation of a push button ignition, etc. If the vehicle ignition has not been initiated, the method returns to 518. However, if it is determined that the vehicle ignition has been initiated, the method will advance to 522 where the fuel rail pressure is measured one or more times before the lower pressure fuel pump is operated. In other examples, the fuel rail pressure may be measured during operation of the lower pressure pump. In some examples, the ignition of the vehicle may be delayed. Yet, in other examples, the pressure may be measured at another location downstream of the higher pressure pump.
The method then advances to 524 where the lower pressure fuel pump is activated. The lower pressure fuel pump may be activated by controller 12. The method then advances to 526, where it is determined if the fuel rail pressure or the fuel pressure downstream of the higher pressure fuel pump at 522 while the lower pressure pump was not being operated dropped below a specified pressure value. In some examples, the specified pressure value may be the pressure regulated by the PPRV 246 during a key-off condition, before the second leak detection algorithm is implemented. In other examples, the specified pressure value may be another suitable pressure, such as a pressure measurement taken between 514 and 516.
If it is determined that the fuel pressure dropped below a specified pressure value or does not achieve a specified pressure threshold value, the method advances to 528, where it is indicated that there is an external leak in the fuel delivery system. Then, the method advances to 530, where actions are taken to mitigate the external leak. The mitigating actions may include: disabling the fuel delivery system, engine, and/or the vehicle 532, adjusting operation of one or more pumps (not shown), and various others. After 532 the method ends.
However, if the pressure in the fuel rail or the pressure downstream of the higher pressure pump has not dropped below a specified pressure value or has achieved a threshold pressure value, the method advances to 533 where it is indicated that an internal leak in the fuel delivery system is present.
The method then advances to 534 where actions are taken to mitigate the internal leak. The mitigating actions may include: adjusting operation of one or more fuel pumps during a subsequent start 536, adjusting injection profile (not shown), adjust injection timing (not shown), and various others. Adjusting operation of one or more pumps may include disabling one or more pumps. After 536 the method ends.
In this way, based on the fuel rail pressure response during an engine start, it may be possible to differentiate a type of leak in the fuel system, and take appropriate action.
At 712 it is determined if the first leak detection algorithm indicates a leak in the fuel delivery system. If the first leak detection algorithm indicates that the fuel delivery system is not experiencing a leak, the method ends. However, if the first leak detection algorithm indicates a leak in the fuel delivery, the method advances to 714, where solenoid valve 227 shown in
The method then proceeds to 716, where the first leak detection algorithm is implemented for a second time. Next, the method advances to 718, where it is determined if the first leak detection algorithm still indicates a leak. If the first leak detection algorithm still indicates that there is a leak, an external leak in the fuel system is indicated at 720. In some examples, the method may identify that fuel is leaking through one or more injectors.
Next the method proceeds to 721 where the specific injector(s) from which the leak is occurring may be identified. The leaking injector(s) may be identified based on a misfire of a corresponding cylinder during an engine start. The method then advances to 722 where mitigating actions are taken. The mitigating actions include: disabling operation of the fuel delivery system and/or the vehicle (724), and/or the specified injectors (726), etc.
However, if the first leak detection algorithm does not indicate a leak during the second implementation, an internal leak may be indicated at 728. In some examples, it may be indicated that a leak is occurring through the higher pressure pump. Next, the method advances to 730 where mitigating actions are taken. The mitigating actions may include: adjusting operation of one or more fuel pumps during a subsequent start (732), adjusting injection profile (not shown), adjust injection timing (not shown), and various others. After 730 the method ends.
In this way, it may be possible to differentiate leaks by appropriate utilization of a valve coupled upstream and/or downstream of the high pressure pump.
Note that the example control and estimation routines included herein can be used with various engine and/or vehicle system configurations. The specific routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various acts, operations, or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases omitted. Likewise, the order of processing is not necessarily required to achieve the features and advantages of the example embodiments described herein, but is provided for ease of illustration and description. One or more of the illustrated acts or functions may be repeatedly performed depending on the particular strategy being used. Further, the described acts may graphically represent code to be programmed into the computer readable storage medium in the engine control system.
It will be appreciated that the configurations and routines disclosed herein are exemplary in nature, and that these specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. For example, the above technology can be applied to V-6, I-4, I-6, V-12, opposed 4, and other engine types. The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various systems and configurations, and other features, functions, and/or properties disclosed herein.
The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and subcombinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.
The present application is a divisional of U.S. patent application Ser. No. 12/107,285 filed on Apr. 22, 2008, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4269061 | Hatsuno et al. | May 1981 | A |
5715786 | Seiberth | Feb 1998 | A |
5795995 | Shimaoka et al. | Aug 1998 | A |
5974865 | Dambach | Nov 1999 | A |
6024064 | Kato et al. | Feb 2000 | A |
6138638 | Morikawa | Oct 2000 | A |
6467466 | Maekawa et al. | Oct 2002 | B1 |
6502551 | Antonioli et al. | Jan 2003 | B2 |
7117729 | Hosoya et al. | Oct 2006 | B2 |
7272488 | Hayashi et al. | Sep 2007 | B2 |
7337652 | Shamine | Mar 2008 | B2 |
7392792 | Puckett | Jul 2008 | B2 |
20010032628 | Goto et al. | Oct 2001 | A1 |
20060048752 | Stroia et al. | Mar 2006 | A1 |
20070028897 | Fukasawa | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
2310458 | Aug 1997 | GB |
11183309 | Jul 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20100275880 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12107285 | Apr 2008 | US |
Child | 12833714 | US |