The present subject matter relates generally to a fuel delivery system for a gas turbine engine.
Gas turbine engines include a combustion section in which fuel is burned to input heat to the engine cycle. Gas turbine engines may operate using one or several types or combinations of fuel, such as propane, ethane, hydrogen, or jet fuel. Additionally, the combustion section may include one of several types of combustors (e.g., can, cannular, annular) for burning such fuel.
Typical combustion sections incorporate one or more fuel nozzles whose function is to receive the fuel and introduce such fuel into an air flow stream so that it can atomize and burn. Gas turbine engines additionally include a fuel delivery system for providing fuel from, e.g., one or more fuel tanks to the combustion section, or more particularly, to the one or more fuel nozzles of the combustion section.
However, during operation of the gas turbine engine, the fuel delivery system may be subjected to vibrations or other mechanical perturbations affecting the delivery of fuel to the one or more fuel nozzles. For example, the inventors of the present disclosure have found that such vibrations can cause the fuel within the fuel delivery system to flow in an inconsistent manner. More specifically, the inventors have found that the fuel may flow in accordance with a mechanical resonance consistent with the vibrations and mechanical perturbations. These inconsistencies in the fuel flow through the fuel delivery system can create inconsistent fuel delivery to the fuel nozzles, potentially resulting in undesirable combustion dynamics. Accordingly, a fuel delivery system capable of providing fuel to the fuel nozzles of the combustion section more consistently would be useful.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one exemplary embodiment of the present disclosure, a fuel delivery system is provided for a gas turbine engine including a combustion section. The combustion section of the gas turbine engine includes a plurality of fuel nozzles. The fuel delivery system includes a feed tube and a fuel manifold fluidly connected to the feed tube for receiving fuel from the feed tube. The fuel delivery system additionally includes a pigtail fuel line fluidly connected to the fuel manifold and configured to fluidly connect to a fuel nozzle of the plurality of fuel nozzles. At least one of the fuel manifold or the pigtail fuel line includes a means for damping a hydraulic instability within the fuel delivery system.
In another exemplary embodiment of the present disclosure, a fuel delivery system is provided for a gas turbine engine including a combustion section. The combustion section of the gas turbine engine includes a plurality of fuel nozzles. The fuel delivery system includes a feed tube and a fuel manifold fluidly connected to the feed tube for receiving fuel from the feed tube. The fuel delivery system additionally includes a plurality of pigtail fuel lines fluidly connected to the fuel manifold, each pigtail fuel line configured to fluidly connect to a fuel nozzle of the plurality of fuel nozzles of the combustion section of the gas turbine engine. At least one of the fuel manifold or a first pigtail fuel line in the plurality of pigtail fuel lines includes an expansion damper for damping a hydraulic instability within the fuel delivery system.
In still another exemplary embodiment of the present disclosure, a gas turbine engine is provided. The gas turbine engine includes a combustion section comprising a plurality of fuel nozzles and a fuel delivery system. The fuel delivery system includes a feed tube and a fuel manifold fluidly connected to the feed tube for receiving fuel from the feed tube. The fuel delivery system additionally includes a pigtail fuel line extending between and fluidly connecting the fuel manifold to a fuel nozzle of the plurality of fuel nozzles of the combustion section. At least one of the fuel manifold or the pigtail fuel line includes a means for damping a hydraulic instability within the fuel delivery system.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended drawings.
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. Additionally, the terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows.
As is described in greater detail below, the present disclosure generally relates to a means for damping a hydraulic instability (or acoustic instability) within a fuel delivery system of a gas turbine engine. During operation of the gas turbine engine, the inventors have found that various vibrations and other mechanical fluctuations can generate a hydraulic instability within the fuel delivery system. Such hydraulic instability can include hydro-mechanical fluid perturbations potentially resulting in inconsistent fuel delivery to a plurality of fuel nozzles of respective combustors within a combustion section of the gas turbine engine. Further, such hydraulic instability may therefore lead to undesirable combustion dynamics, hardware damage, and/or limited operability.
Accordingly, the inventors of the present disclosure have provided a means for damping such hydraulic instability to reduce combustion dynamics, potentially limit hardware damage, and maintain a desired operability. As will be discussed in greater detail below, the means for damping such hydraulic instability may include one or more of the following: (1) an expansion damper within a fuel manifold of the fuel delivery system; (2) an expansion damper within one or more of a plurality of pigtail fuel lines of the fuel delivery system; (3) a variable geometry of the plurality of pigtail fuel lines of the fuel delivery system; (4) a jumper fuel line fluidly connecting a first fuel manifold and a second fuel manifold; and (5) an inconsistent attachment spacing of the plurality of pigtail fuel lines to the fuel manifold of the fuel delivery system.
Referring now to the drawings,
The core turbine engine 16 may generally include a substantially tubular outer casing 18 that defines an annular inlet 20. The outer casing 18 encases or at least partially forms, in serial flow relationship, a compressor section having a booster or low pressure (LP) compressor 22 and a high pressure (HP) compressor 24; a combustion section 26; a turbine section including a high pressure (HP) turbine 28 and a low pressure (LP) turbine 30; and a jet exhaust nozzle section 32. A high pressure (HP) rotor shaft 34 drivingly connects the HP turbine 28 to the HP compressor 24. A low pressure (LP) rotor shaft 36 drivingly connects the LP turbine 30 to the LP compressor 22. The LP rotor shaft 36 may also be connected to a fan shaft 38 of the fan assembly 14. In particular embodiments, such as the embodiment depicted in
As shown in
During operation of the turbofan 10, a volume of air as indicated schematically by arrows 74 enters the turbofan 10 through an associated inlet 76 of the nacelle 44 and/or fan assembly 14. As the air 74 passes across the fan blades 42 a portion of the air as indicated schematically by arrows 78 is directed or routed into the bypass airflow passage 48 while another portion of the air as indicated schematically by arrow 80 is directed or routed into the LP compressor 22. Air 80 is progressively compressed as it flows through the LP and HP compressors 22, 24 towards the combustion section 26.
Within the combustion section 26, the compressed air 80 from the HP compressor 24 and LP compressor 22 is mixed with fuel and combusted in a combustion chamber (not labeled), generating combustion gases 86. The combustion gases 86 generated in the combustion chamber flow from the combustion section 26 into the HP turbine 28, thus causing the HP rotor shaft 34 to rotate, thereby supporting operation of the HP compressor 24. As shown in
It should be appreciated, however, that the exemplary turbofan 10 depicted in
Referring now to
As shown in
As shown in
As shown in
The gas turbine engine with which the combustion section 26 depicted is configured additionally includes a fuel delivery system 100. The fuel delivery system 100 generally includes a feed tube 102 fluidly connected to, e.g., one or more fuel pumps, fuel metering valves, fuel tanks, etc. (not shown). Further, the fuel delivery system 100 includes a fuel manifold 104 fluidly connected to the feed tube 102 for receiving fuel from the feed tube 102, and a pigtail fuel line 106 fluidly connected to the fuel manifold 104 and configured to fluidly connect to a fuel nozzle 70 of the plurality of fuel nozzles 70. More specifically, although not depicted, as will be described in greater detail below, the fuel delivery system 100 further includes a plurality of pigtail fuel lines 106 spaced along the circumferential direction C, each pigtail fuel line 106 extending between and fluidly connecting the fuel manifold 104 to a respective fuel nozzle 70 of the plurality of fuel nozzles 70.
As shown in
Referring now to
As is depicted, the exemplary fuel delivery system 100 generally includes a feed tube 102, a fuel manifold 104, and a pigtail fuel line 106, or rather a plurality of pigtail fuel lines 106. The feed tube 102 may be fluidly connected to various other components of the fuel delivery system 100, such as one or more fuel pumps, fuel valves, and/or fuel tanks (not shown). The fuel manifold 104 is fluidly connected to the feed tube 102 for receiving fuel from the feed tube 102, and each of the plurality of pigtail fuel lines 106 are fluidly connected to the fuel manifold 104 and configured to fluidly connect to a fuel nozzle 70 of the plurality of fuel nozzles 70.
More specifically, for the embodiment depicted, the fuel manifold 104 includes a first fuel manifold 104A and a separate, second fuel manifold 104B. Similarly, the feed tube 102 includes a first branch 108 and a second branch 110. The first and second fuel manifolds 104A, 104B are fluidly connected to the feed tube 102 through the first and second branches 108, 110 of the feed tube 102, respectively, for receiving fuel from the feed tube 102. As is depicted, each of the first fuel manifold 104A and second fuel manifold 104B extend generally along the circumferential direction C. Such a configuration may allow for the plurality of pigtail fuel lines 106 connected thereto to more easily extend to the fuel nozzles 70 of the gas turbine engine when installed (see
The inventors of the present disclosure have discovered that vibrations and other mechanical perturbations of the gas turbine engine and fuel delivery system 100 may result in a hydraulic instability within the fuel delivery system 100. For example, such vibrations and mechanical perturbations may result in hydro-mechanical fluid perturbations (i.e., fluctuations in the fuel flow or pressure), potentially resulting in combustion dynamics, hardware damage, and/or limited operability. Accordingly, for the exemplary fuel delivery system 100 depicted, at least one of the fuel manifold 104 or a pigtail fuel line 106 (of the plurality of pigtail fuel lines 106) includes a means for damping a hydraulic instability within the fuel delivery system 100. More specifically, for the embodiment depicted in
Particularly for the embodiment depicted, the means for damping the hydraulic instability included in the first and second fuel manifolds 104A, 104B are an expansion damper 112 of the first fuel manifold 104A and an expansion damper 112 of the second fuel manifold 104B, or rather a plurality of expansion dampers 112 of the first fuel manifold 104A and a plurality of expansion dampers 112 of the second fuel manifold 104B.
Referring now also to
Referring still to
Referring again generally to
Referring also to
Inclusion of one or more expansion dampers 112 in the first fuel manifold 104A, the second fuel manifold 104B, and/or one or more of the pigtail fuel lines 106 may disrupt a flow of fuel therethrough, reducing an amount of hydraulic instability within the fuel delivery system 100. Specifically, disrupting the flow of fuel by utilizing one or more expansion dampers 112 may disrupt an amount of hydraulic instability through such portion of the fuel delivery system 100.
Referring again particularly to
Although not depicted, in certain embodiments, the jumper fuel line 114 may additionally include an expansion damper along its centerline to provide for additional acoustic damping of pressure fluctuations. Moreover, a connection location of the first branch 108 of the feed tube 102 to the first fuel manifold 104A and a connection location of the second branch 110 of the feed tube 102 to the second fuel manifold 104B may be altered to intentionally change an acoustic resonance of the fuel delivery system 100 in addition to the means for providing hydraulic damping discussed herein. For example, although for the embodiments depicted the first branch 108 is connected to the first fuel manifold 104A approximately at a center of the first fuel manifold 104A, in other embodiments, the first branch 108 of the feed tube 102 may be attached proximate a first end of the first fuel manifold 104A or alternatively, proximate an opposite second end of the first fuel manifold 104A. Similarly, although for the embodiments depicted the second branch 110 is connected to the second fuel manifold 104B approximately at a center of the second fuel manifold 104B, in other embodiments, the second branch 110 of the feed tube 102 may be attached proximate a first end of the second fuel manifold 104B or alternatively, proximate an opposite second end of the second fuel manifold 104B.
It should be appreciated, however, that although the fuel manifold 104 includes a plurality of means for reducing a hydraulic instability of the fuel delivery system 100, in other embodiments, the fuel manifold 104 may not include all such means. It should also be appreciated that although a plurality of the pigtail fuel lines 106 depicted in
For example, reference will now be made to
Moreover, for the exemplary fuel delivery system 100 of
For example, the exemplary fuel manifold 104 depicted includes a means for damping the hydraulic instability, with the means for damping the hydraulic instability being a varied spacing of the plurality of attachment points 120 along the fuel manifold 104. For example, the fuel manifold 104 includes a first attachment point 120A, a second attachment point 120B, and a third attachment point 120C. Similarly, the plurality of pigtail fuel lines 106 provided with the exemplary fuel delivery system 100 of
Moreover, at least certain of the plurality of pigtail fuel lines 106 define variable geometries. For example, the first pigtail fuel line 106A defines a first geometry, the second pigtail fuel line 106B defines a second geometry, and the third pigtail fuel line 106C defines a third geometry. For the embodiment depicted, each of the first, second, and third geometries are distinct from one another, i.e., the first geometry is distinct from the second and third geometries and the second geometry is also distinct from the first and third geometries.
Notably, for the embodiment depicted, the variable geometries of the pigtail fuel lines 106 is due at least in part to the varied spacing of the attachment points 120 of the fuel manifold 104. More specifically, although a spacing of the attachment points 120 is varied, the connection points 122 at the second ends 118 of the plurality of pigtail fuel lines 106 must be constant. For example, a first connection point 122A of the first pigtail fuel line 106A, a second connection point 122B of the second pigtail fuel line 106B, and a third connection point 122C of the third pigtail fuel line 106C must each be equally spaced apart. Accordingly, as is depicted, the first and second connection points 122A, 122B define a first spacing SC1 and the second and third connection points 122B, 122C define a second spacing SC2. For the embodiment depicted, the first spacing SC1 is equal to the second spacing SC2.
In order to accommodate for the varied spacing of the attachment points 120, the pigtail fuel lines 106 include a varied length and a varied shape. For example, the first pigtail fuel line 106A extends a distance X1 in a first direction and a distance Y1 and a second direction, and similarly, the second pigtail fuel line 106B extends a distance X2 in the first direction and a distance Y2 and the second direction. The sum of the distance that the first pigtail fuel line 106A extends (X1 plus Y1) is not equal to the sum of the distance at the second pigtail fuel line 106B extends (X2 plus Y2). More particularly, the sum of the distance that the first pigtail fuel line 106A extends (X1 plus Y1) is less than the sum of the distance at the second pigtail fuel line 106B extends (X2 plus Y2).
It should be appreciated, however, that in other exemplary embodiments, the fuel delivery system 100 may not include both a varied spacing of the attachment points 120 and a varied geometry of the pigtail fuel lines 106. For example, in other embodiments, the fuel delivery system 100 may include a consistent spacing of the attachment points 120 and varied geometries of the pigtail fuel lines 106. With such an embodiment, the plurality of pigtail fuel lines 106 may define a similar length, but may still vary in shape.
Providing a fuel manifold having a varied spacing between connection points for the plurality of pigtail fuel lines and/or including pigtail fuel lines having varied geometries may reduce an amount of hydraulic instability within the fuel delivery system. More particularly, the inventors of the present disclosure have discovered that including one or both of a varied spacing between connection points and/or pigtail fuel lines having varied geometries, may break up an amount of hydro-mechanical fluid perturbations within the fuel delivery system, potentially reducing combustion dynamics, hardware damage, and limited operability.
The foregoing has described a fuel delivery system for a gas turbine engine combustor assembly. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings) may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3793838 | Nash | Feb 1974 | A |
5263314 | Anderson | Nov 1993 | A |
5369952 | Walters | Dec 1994 | A |
7272931 | Held et al. | Sep 2007 | B2 |
7992390 | Patel et al. | Aug 2011 | B2 |
8037690 | Morenko et al. | Oct 2011 | B2 |
8769954 | Fiebig et al. | Jul 2014 | B2 |
9140453 | Kojovic et al. | Sep 2015 | B2 |
9970357 | Fletcher | May 2018 | B2 |
20020083987 | Dooley | Jul 2002 | A1 |
20110048021 | Slobodyanskiy | Mar 2011 | A1 |
20130340438 | Abreu | Dec 2013 | A1 |
20150233581 | Cutler | Aug 2015 | A1 |
20150315969 | Fisher | Nov 2015 | A1 |
20160108818 | Fletcher | Apr 2016 | A1 |
20160177836 | Wickstrom | Jun 2016 | A1 |
20160201562 | Chasse, Jr. | Jul 2016 | A1 |
20170030583 | Fujii | Feb 2017 | A1 |
20170067590 | Hanner | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
0 726 387 | Aug 1996 | EP |
2 249 083 | Nov 2010 | EP |
2910751 | Aug 2015 | EP |
3034945 | Jun 2016 | EP |
WO2014173660 | Oct 2014 | WO |
Entry |
---|
Invitation to pay additional fees issued in connection with corresponding PCT Application No. PCT/US2017/028478 dated Jul. 11, 2017. |
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2017/028478 dated Sep. 1, 2017. |
Number | Date | Country | |
---|---|---|---|
20170342912 A1 | Nov 2017 | US |