Not applicable
Not applicable
The present invention relates to internal combustion engines and, more particularly, to fuel supply components employed in internal combustion engines.
In recent years, many engine manufacturers have developed and used turbine style fuel pumps to provide fuel to internal combustion engines. Turbine pumps have been preferred over more traditional fuel pumps employing gerotors or rolling vane components since turbine pumps generally are more efficient and less expensive to manufacture. However, since their inception turbine pumps have suffered from the limitation that, despite pushing fuel effectively out of the pump, they do not pull fuel into the pump very well. To overcome this weakness, turbine pumps are often placed within the fuel tanks from which they are drawing fuel, so as to reduce the force needed to pull fuel into the pumps. Placement of the pumps in the fuel tanks also reduces manufacturing costs since there is less concern over leakage from the pumps.
The use of in-tank turbine fuel pumps is an industry standard for automotive and power sports Electronic Fuel Injection (EFI) systems in particular. In-tank turbine fuel pumps are suitable for these industries because the engine manufacturers in these industries typically provide their own fuel tanks and fuel pumps that are specifically designed for use in conjunction with particular engines or vehicles. However, in-tank turbine fuel pumps are not particularly suitable in the area of small utility engines. Unlike manufacturers in the automotive and power sports industries, small utility engine manufacturers often try to utilize fuel systems that can be implemented universally on a wide variety of different types of engines and vehicles, and/or fuel systems that are applicable both to carbureted engines and to engines employing EFI systems. Indeed, it is typically desired that small utility engines be capable of universal (or largely universal) implementation in conjunction with a variety of vehicles and/or other applications. Yet the use of in-tank turbine fuel pumps in fuel tanks tends to limit the universality of application of those fuel systems with respect to different types of engines and vehicles.
Because of the restrictiveness of in-tank turbine fuel pumps in this regard, small utility engine manufacturers typically rely upon inline fuel pumps located outside of the fuel tanks instead of in-tank turbine fuel pumps. Yet although the use of in-line fuel pumps in conjunction with fuel tanks on small utility engines and associated vehicles enhances the universality of those fuel tanks/pumps with respect a variety of engines/vehicles, there are nevertheless certain other disadvantages associated with the use of in-line pumps in these applications. One disadvantage of using an in-line fuel pump is that it typically is only available with oversized flow capacity to produce the high-pressure necessary to pressurize an EFI system. This over-sizing typically results in a fuel flow that is three to eight times the flow capacity required. Also, the pressure of the fuel exiting the in-line fuel pump often may have a tendency to exceed the pressure required by the EFI system, and so there usually is a need to regulate the pressure of the fuel output by the fuel pump through the use of a pressure regulator.
The use of a pressure regulator in conjunction with the fuel tank and in-line fuel pump in turn complicates the design of the fuel delivery system. Not only must the fuel pressure regulator itself be mounted upon the engine/vehicle upon which the fuel delivery system is being implemented, but also a return fuel line must be provided to link the pressure regulator back to the fuel tank to allow for fuel exiting the regulator (as occurs when the pressure regulator determines that the output pressure of the fuel pump is excessive) to be returned to the fuel tank. Further, the implementation of the extra return fuel line necessitates the formation of an additional return hole in the OEM fuel tank wall. Modification of the fuel tank to in this manner can undermine any warranty provided by the OEM in relation to the fuel tank, and also can potentially decrease the useful life and reliability of the fuel tank.
The conventional arrangements of in-line fuel pumps in relation to small utility engines and associated vehicles are disadvantageous for additional reasons as well. For example, because such conventional arrangements tend to employ oversized in-line fuel pumps, operation of the pumps tends to consume relatively large amounts of power from the vehicle's electrical system. This is disadvantageous particularly in relation to small utility engines, which have limited battery recharging capabilities due to their size and power output. Further, conventional arrangements also are relatively incompatible with the process of upgrading a carbureted engine into an EFI engine. To upgrade an engine in this manner, the party performing the modification must perform multiple modifications to the engine so as to accommodate each of the electronic fuel pump, the pressure regulator and the return line back to the fuel tank.
For at least these reasons, therefore, it would be advantageous if an improved engine mounted fuel delivery system could be developed. More particularly, it would be advantageous if in at least some embodiments the improved engine mounted fuel delivery system could be more easily implemented in conjunction with a variety of types of engines and/or associated vehicles (or in conjunction with other applications), including engines/vehicles employing EFI systems. Additionally, it would be advantageous if in at least some embodiments the improved engine mounted fuel delivery system was particularly suitable for use in conjunction with small utility engines in that the fuel delivery system enhanced, or at least did not detract from, the universality of those engines with respect to different vehicle or other applications. Further, it would be advantageous if in at least some embodiments the improved engine mounted fuel delivery system could be easily implemented upon an engine that was previously a carbureted engine but was being modified to employ an EFI system. Additionally, in at least some embodiments, it would be advantageous if the demand imposed by such an improved engine mounted fuel delivery system upon an associated engine or vehicle's electrical system was reduced by comparison with conventional arrangements.
The present inventors have recognized the aforementioned disadvantages associated with conventional fuel system designs, and have further recognized that an improved engine mounted fuel delivery system can overcome one or more of these disadvantages by employing, in at least some embodiments, an integrated module including a subsidiary fuel tank separate from the main engine fuel tank and, additionally, a fuel pump and a pressure regulator housed within the module. The implementation of such an integrated module is less complicated than the implementation of conventional fuel delivery systems, both in terms of modifying a carbureted engine into an EFI engine and otherwise, insofar as only the single integrated module need be mounted upon the engine/vehicle, and insofar as no return line linking the pressure regulator with the main engine fuel tank is necessary since the fuel exiting the pressure regulator can be directly deposited into the subsidiary fuel tank. Given these considerations, such an integrated module is appropriate and applicable to a wide variety of engines and/or vehicles (or other applications) in which engines are employed, and is especially (but not exclusively) suitable for use in small utility engines that themselves are designed for largely universal use in a variety of vehicles (or other applications). Additionally, because the fuel pump is mounted within the integrated module, in at least some such embodiments, the fuel pump can take the form of a turbine fuel pump.
In at least some embodiments, the present invention relates to an integrated, modular system for delivering fuel to an engine component, the system configured for use with an engine that is suitable for a variety of different applications and that includes a fuel tank. The system includes a housing defining a reservoir chamber, an inlet, and an internal passage leading to an outlet, the inlet receiving fuel from the fuel tank and directing the received fuel into the reservoir chamber, the outlet capable of providing fuel from the internal passage toward the engine component. The system further includes a pump supported within the housing and having a pump input and a pump output, where the pump input is in fluid communication with the reservoir chamber and the pump output is in fluid communication with the internal passage. The system additionally includes a pressure regulator supported within the housing and having a regulator input and a regulator output, where the regulator input is in fluid communication with the internal passage and the regulator output is in fluid communication with the reservoir chamber. In at least some such embodiments, the integrated, modular system is capable of being implemented upon the engine by mounting the housing upon the engine, establishing a first connection between the inlet and the fuel tank, and establishing a second connection between the outlet and the engine component.
Additionally, in at least some embodiments, the present invention relates to an internal combustion engine suitable for use in conjunction with a plurality of applications. The internal combustion engine includes an Electronic Fuel Injection (EFI) engine intake system, a fuel tank, and a first pump coupled to receive fuel from the fuel tank. The engine further includes an integrated, modular fuel delivery system having a housing defining both a reservoir chamber and a supply passage therewithin, a second pump contained within the housing and coupled between the reservoir chamber and the supply passage, and a pressure regulator also contained within the housing and coupled between the reservoir chamber and the supply passage. The engine also includes first and second connectors respectively linking the first pump to an inlet of the reservoir chamber and linking an outlet of the supply passage to the EFI engine intake system, the inlet allowing for a first flow of the fuel from the first connector into the reservoir chamber, the outlet allowing for a second flow of pressurized fuel output by the second pump into the second connector.
Further, in at least some embodiments, the present invention relates to a method of providing pressurized fuel to an engine component, the method for use with an engine that is suitable for a variety of different applications and that includes a primary fuel tank. The method includes providing a housing defining a reservoir chamber and a supply passage having a discharge end, where an inlet tube for receiving fuel from the primary fuel tank extends through the housing and to the reservoir chamber. The method additionally includes providing a pump mechanism and a pressure regulator supported within the housing, where each of the pump mechanism and the pressure regulator is interconnected between the supply passage and the reservoir chamber. The method also includes pumping at least some of the fuel from the reservoir chamber to the supply passage by way of the pump mechanism, and regulating a pressure within the supply passage by way of the pressure regulator, which allows for at least some of the fuel pumped into the supply passage to pass back into the reservoir chamber when the pressure exceeds a threshold level. The method additionally includes discharging at least some of the fuel from the discharge end at least indirectly to the engine component.
Additionally, in at least some embodiments, the present invention relates to a method of converting an internal combustion engine from a first status in which the internal combustion engine is a carbureted engine to a second status in which the internal combustion engine employs an Electronic Fuel Injection (EFI) system. The method includes adding the EFI system to the internal combustion engine, and providing a fuel delivery system module having a housing that defines a reservoir chamber and a supply passage and that supports therewithin both a pump mechanism and a pressure regulator, the pump mechanism and the pressure regulator both linking the supply passage with the reservoir chamber. The method further includes connecting a primary fuel tank to an inlet of the fuel delivery system, the inlet leading to the reservoir chamber, and connecting an outlet of the supply passage to the EFI system.
Referring to
In the present embodiment shown in
Referring additionally to
Further due to the pumping action of the primary fuel pump 8, fuel is pumped away from the primary fuel pump to the fuel delivery system 2 via a secondary connector 9 linking those two structures. Thus, fuel from the primary fuel tank 6 is communicated to the fuel delivery system 2. Also as shown, the primary fuel pump 8 can be directly supported upon an engine crankcase 10. Upon reaching the fuel delivery system 2, and as described in detail below with reference to
Turning to
Further as shown in
Although
Additionally as shown in
Also as shown in
Referring additionally to
More particularly, the regulating passage 42 extends downward from a first end 45 of the supply passage 40 to the pressure regulator 36, which is positioned between the regulating passage and the reservoir chamber 18. The pump passage 44 extends downward from an intermediate location 46 along the supply passage 40 to a fuel pump outlet 47 of the fuel pump 34. The fuel pump outlet 47 is mounted so as to extend at least partially into the pump passage 44 along a pump interface segment 48 of the pump passage, so as to achieve proper sealing between the fuel pump outlet 47 and the pump passage. In at least the present embodiment, the fuel pump 34 is removably attached to the pump passage 44.
Additionally, the supply passage 40 also includes, opposite the first end 45, a discharge end 50 that extends horizontally outward away from the remainder of the top portion 15 (the intermediate location 46 being between the first and discharge ends 45, 50). The discharge end 50 serves as the fuel outlet for the fuel delivery system 2 and, as discussed above with respect to
Referring still to
In at least some embodiments, the secondary connector 9 (as well as possibly the primary connector 7) is a flexible rubber hose, although various other types of connectors can be used such as a rigid metal tube. Likewise, in at least some embodiments, the pressurized connector 11 is a flexible rubber hose, although various other types of connectors can be used such as a rigid metal tube. Through the use of the primary, secondary and pressurized connectors 7, 9 and 11, and particularly when those components are flexible, the fuel delivery system 2 can be mounted upon the engine 4 in a variety of positions and manners relative to the primary fuel tank 6, the primary fuel pump 8, and the engine intake fuel system 12, as well as relative to other engine and/or vehicle components.
Fuel entering the fuel delivery system 2 via the inlet tube 52 is stored in the reservoir chamber 18. The float mechanism 38, as shown in
In the present embodiment, the vent tube 54 allows fuel vapors to vent to the external environment when the float mechanism 38 is open. However, in at least some embodiments the vent tube 54 does not lead from the reservoir chamber 18 to the external environment, but rather is coupled to the engine intake system 12 (or to another location) by way of an additional connector such as another rubber hose. In such embodiments, the vent tube 54 and additional connector allow fuel vapors from the reservoir chamber 18 to be vented to the engine intake system 12 (or to another location) rather than to the external environment, thereby potentially reducing fuel vapor emissions to the environment.
Also, in other alternate embodiments, the float mechanism 38 can be employed to govern fluid flow through the inlet tube 52 rather than the vent tube 54. More particularly, in some such embodiments, the float mechanism 38 can be hingedly to the lower surface of the top portion 15 facing the reservoir chamber 18 below the inlet tube 52, and positioned so as to close the inlet tube when the fuel level within the reservoir chamber reaches a threshold level and to otherwise be open (or at least openable when fuel is directed toward the reservoir chamber through the inlet tube). In further alternate embodiments, float mechanisms can be employed both in relation to the vent tube 54 and the inlet tube 52.
Referring still to
The additional fuel pump 34 can be supplied with power in a variety of manners. In the present embodiment, the additional fuel pump 34 operates on 12 Volt Direct Current (DC) power such as that readily available from a battery on a utility engine equipped vehicle, although in other embodiments the additional fuel pump can be configured to utilize other types of power (e.g., 6 Volt DC power). Further, in the present embodiment the additional fuel pump 34 is supplied with electrical power by way of electrical leads (not shown) extending through and exiting out of an exterior surface of the top portion 15 of the housing 14. The external terminals of the electrical leads are situated in an electrical connector 60, which can take the form of a plug-type fitting allowing for convenient connection and disconnection from a power source.
To the extent that a more efficient type of pump such as an electric turbine pump is used as the additional fuel pump 34, the drain of power and current from the power source (e.g., battery) of the engine 4 can be reduced relative to what it otherwise might be (e.g., reduced by 3 amps). Further, while it is envisioned that typically the additional fuel pump 34 will be driven by way of electrical power supplied via the electrical leads, in alternate embodiments, the additional fuel pump 34 can operate using other types of power. For example, the additional fuel pump 34 can be powered by an internal electrical source (e.g., an internal battery within the fuel pump), or even possibly driven mechanically way of a rotating shaft that extends outward through the housing 14 and is driven by an external motor or other device.
Additionally as shown in
Based upon the above description it is apparent that in at least some embodiments, the fuel delivery system 2 can be assembled as follows. First, the top and bottom portions 15, 16 of the housing 14 are formed, with the bottom portion largely containing the reservoir chamber 18 and the top portion including the supply passage 40, regulating passage 42 and pump passage 44. Next, the additional fuel pump 34 is coupled to the pump passage 44 and the pressure regulator 36 is coupled to the regulating passage 42. Also, the float mechanism 38 is coupled to the top portion 15. Finally, the top and bottom portions 15, 16 are assembled together to define the reservoir chamber 18, with the pressure regulator 36 and the additional fuel pump 34 extending from the supply passage 40/regulating passage 42/pump passage 44 toward and into the reservoir chamber when the top and bottom portions are so assembled.
During operation of the fuel delivery system 2, the reservoir chamber 18 is filled by way of the inlet tube 52 with fuel from the primary tank 6 via the primary connector 7, primary fuel pump 8, and secondary connector 9. Once the reservoir chamber 18 is filled to a threshold level, the float mechanism 38 closes the vent tube 54 to prevent the reservoir chamber 18 from overfilling. Additionally, assuming that the additional fuel pump 34 is operating, the additional fuel pump 34 will pump fuel up from the reservoir chamber 18 into the pump passage 44, to the supply passage 40 and the regulating passage 42, and out the discharge end 50 to the engine intake fuel system 12 via the pressurized connector 11.
Due to variations in the fuel demands of the engine 4, or due to other reasons including merely the ongoing operation of the additional fuel pump 34, the supply passage 40 (as well as the regulating and pump passages 42, 44) can experience excessive pressure due to the operation of the fuel pump 34 as it drives fuel towards the engine fuel intake system 12. When the supply passage 40 (and the regulating and pump passages 42, 44) experiences a fuel pressure level relative to that within the reservoir chamber 18 that exceeds the tolerance of the pressure regulator 36, the pressure regulator 36 allows fuel from the supply passage 40 to be returned to the reservoir chamber, thereby relieving the excessive fuel pressure within the supply passage 40. Depending upon the embodiment, the threshold tolerance of the pressure regulator 36 can take on a variety of levels, and potentially the tolerance of the pressure regulator can be varied in real time based upon operational conditions of the fuel delivery system 2 or the engine 4.
Given that the fuel delivery system 2 allows over-pressurized fuel to flow back into the reservoir chamber 18, there is no need for any additional return line to be provided between the fuel delivery system 2 (and particularly the supply passage 40/fuel pump outlet 47) and the primary fuel tank 6 in order to accommodate fuel passing through the pressure regulator 36. Nor need any additional hole be formed in the primary fuel tank 6 to accommodate such an additional return line. Further, by providing the additional fuel pump 34 and the pressure regulator 36 within the housing 14 in an integrated, modular manner, there is no need to mount multiple, separate components such as a separate pressure regulator and a separate high-pressure fuel pump upon the engine 4. Rather, only the overall fuel assembly 2 need be mounted to the engine 4.
Given the aforementioned characteristics, the fuel delivery system 2 is particularly suitable for use in conjunction with a variety of different types of engines, as well as with a variety of different types of vehicles and/or applications employing such engines, since the fuel delivery system 2 is capable of being readily implemented (or at least readily adapted for implementation) in conjunction with such various engines and/or vehicles despite different characteristic features of the engines and/or vehicles. That is, the fuel delivery system 2 is largely (if not entirely) universal in terms of its ability to be mounted on and used in conjunction with a variety of types of engines and/or vehicles.
Although applicable to a variety of different types of engines and engine applications, the fuel delivery system 2 in particular is appropriate for use in conjunction with small utility engines, which themselves are typically intended to be universally (or largely universally) applicable to a wide variety of vehicles or other applications (particularly since the manufacturers of the engines and manufacturers of the vehicles or other application components tend to be different parties). The fuel delivery system 2, given its unitary housing 14 containing each of the reservoir chamber 18, supply passage 40 (and regulating and pump passages 42, 44), pressure regulator 36, and additional fuel pump 34, has a particularly compact, integrated and modular nature that enables it to be implemented in a manner that is consistent with and does not detract from the universality of the engines themselves.
More particularly, since the fuel delivery system 2 eliminates the need for a fuel return line between the pressure regulator 36 and the primary fuel tank 6, and because there is no need to mount the various components of the fuel delivery system (e.g., the pressure regulator 36 and the additional fuel pump 34) independently of one another upon an engine or other supporting structure, the fuel delivery system 2 can be easily moved around to different support locations depending upon the requirements of the vehicle or other structure(s) with which the engine is being implemented. Also, in at least some embodiments such as that described above, the fuel delivery system 2 need not excessively protrude outward from a supporting engine on which it is mounted, which can be particularly advantageous when the engine itself is to be implemented on a vehicle or in another application where space is at a premium.
The fuel delivery system 2 also is particularly advantageous for use in conjunction with engines having EFI systems. Not only does the integrated, modular nature of the fuel delivery system 2 reduce the complexity and consequently the costs of implementing the fuel delivery system in a given engine, but also the fuel delivery system 2 also can be readily and easily added to a carburetor-equipped engine that is being modified to an EFI engine. More particularly, when modifying a carbureted engine into an EFI engine, the fuel delivery system 2 can be simply installed by mounting the fuel delivery system onto the engine as a single module, connecting the output of the original fuel pump associated with the carbureted engine to the inlet tube 52 of the fuel delivery system 2, and connecting the discharge end 50 of the fuel delivery system 2 to the EFI system.
It is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4539965 | Soltau | Sep 1985 | A |
4579093 | Eanes | Apr 1986 | A |
4844043 | Keller | Jul 1989 | A |
4848283 | Garms et al. | Jul 1989 | A |
5103793 | Riese et al. | Apr 1992 | A |
5368001 | Roche | Nov 1994 | A |
5389245 | Jaeger et al. | Feb 1995 | A |
5579740 | Cotton et al. | Dec 1996 | A |
5647331 | Swanson | Jul 1997 | A |
5855197 | Kato | Jan 1999 | A |
5865160 | Kato | Feb 1999 | A |
5873347 | Kato et al. | Feb 1999 | A |
5908020 | Boutwell et al. | Jun 1999 | A |
6216671 | Sawert et al. | Apr 2001 | B1 |
6257208 | Harvey | Jul 2001 | B1 |
6305357 | Soukeras | Oct 2001 | B1 |
6311725 | Hamada et al. | Nov 2001 | B1 |
6314946 | Funakura et al. | Nov 2001 | B1 |
6345608 | Rembold et al. | Feb 2002 | B1 |
6405711 | Smith et al. | Jun 2002 | B1 |
6484342 | Takasaki et al. | Nov 2002 | B2 |
6655366 | Sakai | Dec 2003 | B2 |
6679229 | Wada et al. | Jan 2004 | B2 |
6718953 | Torgerud | Apr 2004 | B1 |
6729308 | Kanamaru | May 2004 | B1 |
6739318 | Nomura | May 2004 | B2 |
6792918 | Halsall | Sep 2004 | B1 |
6802301 | Fauser et al. | Oct 2004 | B2 |
6866029 | Clarkson et al. | Mar 2005 | B1 |
6918380 | Nomura | Jul 2005 | B2 |
6971374 | Saito | Dec 2005 | B2 |
7114491 | Hamada et al. | Oct 2006 | B2 |
7117857 | Saito et al. | Oct 2006 | B2 |
7152583 | Abe et al. | Dec 2006 | B2 |
7168414 | Harvey | Jan 2007 | B2 |
7503314 | Achor | Mar 2009 | B2 |
20020100457 | Sakai | Aug 2002 | A1 |
20040003796 | Nomura | Jan 2004 | A1 |
20060048757 | Harvey | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090194074 A1 | Aug 2009 | US |