1. Field of the Invention
The present invention relates to a fuel delivery system and more particularly to a control system for a fuel delivery system for use in gasoline service stations which provides enhanced functionality and diagnostic capabilities heretofore unknown.
2. Description of the Prior Art
Retail fuel delivery systems, for example, for dispensing gasoline, are known to include: one or more underground storage tanks for carrying various grades of fuel; a submersible pump disposed within each of said storage tanks for pumping fuel from the storage tank to a dispenser on demand; a level probe and a tank gauge for monitoring fuel level within the tank; and a dispenser which acts as a point of sale (POS) device for dispensing fuel to consumers. A pump controller is provided to run the submersible pump in response to certain signals being present. For example, many known dispensers include credit card readers for enabling a consumer to charge the purchase at the dispenser and enable the pump. In addition, the pump controller can be enabled from a service station attendant for an unspecified amount of purchase or a specified purchase. When one or more enabling signals are present, the pump controllers are under the control of a trigger mechanism disposed at the dispenser. Examples of such fuel delivery systems are disclosed in: U.S. Pat. Nos. 5,361,216; 5,363,093; 5,376,927; 5,384,714; 5,423,457; 5,757,664 and 6,302,165. Fuel delivery systems are also disclosed in published Patent Application No. U.S. 2001/0037839 A1, as well as commonly-owned U.S. Pat. No. 5,577,895, all hereby incorporated by reference.
Due to regulations promulgated by the Environmental Protection Agency over ten years ago, retail fuel delivery systems are now required to include leak detection systems for detecting leaks in the underground storage tanks. As such, a number of leak detection systems for such underground storage tanks are known. Examples of such leak detection systems are disclosed in U.S. Pat. Nos. 5,363,093; 5,376,927; 5,384,714; 5,423,457; 5,526;679; 5,757,664; and 5,779,097, all hereby incorporated by reference.
Other than the leak detection capabilities, the functional as well as the diagnostic capabilities of such fuel delivery systems are relatively limited. In particular, various common operating conditions exist which either go undiagnosed or are relatively difficult to diagnose. For example, conditions are known in which the submersible pump is installed incorrectly in that it is located too far from the bottom of the tank. This condition is often undiagnosed causing the pump controller to indicate that the tank is empty long before the tank gauge indicates a low level alarm resulting in fuel in the bottom of the tank never being used.
Various conditions are also known to exist which result in false alarms. For example, situations are known in which the pump controller is faulted during a leak detection test. During such a condition, a leak is indicated. False leak detection alarms can also be indicated in fuel delivery systems in which the underground tanks are connected together by piping or are “manifolded” and a check or relief valve is stuck in an open position.
In addition to limited and faulty diagnostics, fuel delivery systems are also known to have relatively limited functionality. For example, when a pump controller is faulted, such faults are indicated on the pump controller itself. As such, service station attendants are known to reset the pump controllers without logging the pump controller fault, thus, losing the fault history. Moreover, the pump controllers are normally contained in locked rooms. Thus, the attendants must be given access to the locked rooms to enable the pump controllers to be manually reset. Thus, there is a need for a control system with enhanced functionality and diagnostic capability for fuel delivery systems.
Briefly, the present invention relates to a control system for a fuel delivery system which provides enhanced functionality and diagnostic capabilities relative to known systems. In accordance with one aspect of the invention, enhanced functionality and diagnostic capability is provided by integrating the pump controller and the tank gauge by way of a control or integration unit. The control unit includes a microprocessor and communication hardware for communicating with the tank gauge and the pump controllers. In accordance with alternate embodiments of the invention, a control unit is included which provides additional functionality, such as automatic logging of controller faults.
These and other advantages of the present invention will be readily understood with reference to the following specification and attached drawing wherein:
The present invention relates a control system for an underground fuel delivery system which provides enhanced functional and diagnostic capabilities relative to known systems. In accordance with one aspect of the invention, the pump controller is integrated with the tank gauge to provide the enhanced functional and diagnostic capability. As will be discussed in more detail below, the fuel delivery system includes a control or integration unit in which one embodiment of the invention communicates with the various pump controllers and tank gauge.
In order to monitor the level of fuel in the underground storage tanks 22, 24, tank level probes 42 and 44 are provided. These tank level probes 42, 44 may be magnetorestrictive type probes, which are connected to a tank gauge 46 to indicate the fuel level within the tanks 22 and 24. The tank gauge 46 may be, for example, Incon TS-2001, available from Intelligent Controls, Inc., Saco Maine.
In accordance with an important aspect of the invention, a control or integration unit 48 is provided, as described in detail below. In one embodiment of the invention, the integration unit 48 is configured to communicate with the pump controllers 38 and 40 as well as the tank gauge 46 to provide enhanced functional and diagnostic capability of the controlled heretofore unknown.
Turning to
The integration unit 48 may also include a data memory, for example, a random access memory (RAM) memory 56. The data memory 56 is likewise attached to the system bus 52. A non-volatile memory 58 may also be provided, for example, a EEPROM. The non-volatile memory 58 may be utilized for logging faults to provide a fault history log. In order to associate controller faults with real time, a conventional real time clock 60 may also be provided. The real time clock 60 as well as the non-volatile memory 58 are connected to the system bus 52.
The integration unit 48 may also include a plurality of communication interfaces, generally identified with the reference numerals 62 and 64. As shown, the communication interface 62 is used for providing bi-directional communication to the pump controllers 38, 40 (
Referring to
If the fault is an under load fault 96, which means that the storage tank is empty, as determined in step 96, a message is sent in step 98 to order fuel. If the fault is not an under load fault, a request service message is sent in step 100. After sending a message, the system waits for the faulted controller to be reset while continuing to poll the pump controllers 38,40. Thus, if a no fault condition is detected in step 88, the value in the array CTRLR[I] corresponding to that pump controller is set to a NO FAULT value in step 102. The variable I is subsequently incremented in step 102 to move on to the next controller. The system checks in step 104 whether all of the controllers have been polled. Thus, the system checks whether I is less than the total number of controllers in step 104. If so, the system loops back to step 86, if no the system loops back to step 84.
If an empty tank fault condition is indicated by one of the controllers 38, 40 in step 112, the tank gauge 46 is polled in step 118 for its status. If the tank gauge 46 indicates that fuel is being delivered in step 120, as indicated by a rapidly rising level, the system resets the controller 38, 40 in step 122 and loops back to step 116. If fuel is not being delivered, as indicated in step 120, the system checks for a low level alarm in step 124. If a low level alarm is indicated in step 124, the system returns to step 116 and continues iteratively polling the pump controller 36, 38. If a low level alarm is not indicated, a message that the pump is too far from the bottom is sent in step 126. By sending the message in step 126, adjustments can be made, so that the fuel below the pump level can be utilized. Also, in step 127, in response to no low level alarm, the level of the low level alarm in the tank gauge is reset so a low level alarm is generated prior to the shutdown of the pump 34, 36 by an associated pump controller 36, 38 as a result of an empty tank condition. In particular, the tank gauge low level alarm limit is automatically adjusted to a level higher than the level in which the associated pump controller 38, 40 trips off as a result of an empty tank condition. After the message is sent in step 126 and the low level alarm adjusted in step 127, the system returns to step 116 and iteratively polls additional pump controllers 38, 40 in the system.
An exemplary electronic line leak detection system is a Model No. LS300 Auto Learn, available from EBW, Muskegan, Mich. When line leak detection systems are under test, the pump 34, 36 is turned on and pressure changes are observed. If the pump controller 38, 40 is faulted, the pump 34, 36 will not turn on and there will be no corresponding pressure change. In such a situation, the line leak detection system may incorrectly indicate a leak.
In order to resolve this problem, the system as illustrated in
The system illustrated in
If the tank gauge indicates a RUN signal is not present from the dispenser in step 154, the pump controllers 38, 40 are polled in steps 160 and 162 for fault status. If the pump controller 38, 40 indicates a fault in step 162, the system loops back to step 156 and increments the variable I and polls the next line. If the pump controller 38, 40 for the line I is not faulted, as indicated in step 162, a pump controller RUN command is sent to the pump controllers 38, 40 in step 164. Subsequently, the tank gauge 46 is polled in step 166. The system then determines in step 168 whether the pressure has changed. If not, a message indicating a transducer failure is issued in step 170. Alternatively, the system returns back to step 156.
If a run signal is not indicated as determined in step 178, the pump controller for line I is polled for its fault status and controller type in step 184. The controller type is returned from the controllers 38, 40 in response to a TYPE command. The system determines in step 186 the fault status of the pump controller 38, 40 and whether or not it is a variable frequency pump controller. If the system is faulted or not a variable frequency pump controller, the system loops back to step 180. However, if the system is not faulted and the controller is a variable frequency controller, the pump controller 38, 40 is commanded to regulate the pressure at a value X in step 188. The tank gauge 46 is then polled in step 190 for the pressure of line I. If the pressure indicated by the line leak subsystem or the tank gauge 46 does not equal the command pressure X within a tolerance Y, as determined in step 192, a message is sent in step 194 indicating a transducer failure. Otherwise the system simply loops back to step 180.
As mentioned above, EPA regulations require all fuel storage systems to include automatic leak detection. Calibration of such line leak systems require manual insertion of a calibrated leak. Since line characteristics can change over time, the line leak detection system can malfunction. The system solves this problem as illustrated in
If a tank 22, 24 is gaining level, the tank gauge 46 may indicate a leak, just as if the tank is losing level. The reason for this is because water may be coming into the tank if the water table is higher than the fuel level in the tank. In a manifolded system, the piping from the two tanks is connected as illustrated in
This system can be resolved by the system illustrated in
Turning to
If it is determined in step 222 that a pump is off, and in step 226 that at least one pump just turned on, the system polls the tank gauge 46 in step 228 to obtain the tank level when one or more pumps 34, 36 just turned on In step 230, the level at turn on is evaluated to determine if it was greater than the level at turn off plus a tolerance X. If so, the system indicates that the tank 22, 24 is gaining level while the pumps 34, 36 are off in step 232. Otherwise, the system indicates in step 234 that the tank 22, 24 is not gaining level while the pumps are off. In step 236, the system determines whether the tank 22, 24 is gaining level while other pumps 34, 36 are on. If so, a relief valve failure is indicated in step 238. If not, the system proceeds to step 240 to obtain the level when all pumps have been turned off. In particular, when all pumps are turned off, the tank gauge 46 is polled in step 242. The system then checks in step 244 to determine whether the level at turn off is greater than the level at turn on plus a tolerance. If so, this assumes that the tank 22, 24 is gaining level while the other pumps 34, 36 are on. If it is determined that the tank 22, 24 level is greater than the level at turn on plus a tolerance X, the system indicates in step 246 that the tank 22, 24 is gaining level while the other pumps are on. Next, in step 248, the system determines whether the tank 22, 24 is gaining level while all of the pumps are off. If not, a pump [I] relief valve failure is indicated in step 250. If so, the system returns to step 226 and repeats the loop. Alternatively, if it is determined in step 244 that the tank 22, 24 is not gaining level when the other pumps are on, the variable GAIN_ON[I] is set equal to a logical zero or false and returned to step 226. After each iteration of the loop, the system proceeds to step 252 where the variable LAST_ANY_ON is set equal to the variable ANY_ON; the variable ANY_ON is set equal to TMP_ANY_ON; and the variable GET_LEVEL_ON is set to a logical zero or false and the variable GET_LEVEL_OFF is also set to false.
The system checks in step 254 whether any of the pumps are on. If so, the system checks in step 256, to determine if any pumps were on during the last iteration through steps 220, 222, 224, 226, 228. If not, the variable GET_LEVEL_ON is set equal to a logical one or true in step 258 and the system loops back to step 218. If so, the system loops directly back to 218. Alternatively, if the system determines that no pumps are on, as determined in step 254, the system checks in step 260 whether any pumps were on during the last iteration through steps 220, 222, 224, 226, 228. If so, the variable GET_LEVEL_OFF is set equal to a logical one or true in step 262 and the system loops back to step 218. Alternatively, if the last pump was not on the system loops directly back to step 218.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described above.
Number | Date | Country | |
---|---|---|---|
Parent | 10224126 | Aug 2002 | US |
Child | 11837685 | US |