The present invention is directed to a fuel dispensing nozzle, and more particularly, to a fuel dispensing nozzle with an attitude sensing device.
Fuel dispensers are widely utilized to dispense fuels, such as gasoline, diesel, natural gas, biofuels, blended fuels, propane, oil, ethanol or the like, into the fuel tank of a vehicle. Such dispensers typically include a nozzle that is insertable into the fuel tank of the vehicle. The nozzle may include an attitude sensing device that is configured to cause the nozzle to shut off when the nozzle is oriented in a predetermined configuration (i.e., typically when the nozzle is positioned at a particular angle relative to horizontal). However, existing attitude sensing devices are often not triggered at consistent angles and therefore do not provide repeatable, predictable performance.
In one embodiment the present invention is a nozzle with an attitude device which provides repeatable and predictable performance. More particularly, in one embodiment the invention is a nozzle including a dispensing path configured such that fluid is dispensable therethrough and into a vessel, and a sensing path in which a negative pressure is generated when fluid flows through the dispensing path. The nozzle further includes an attitude sensing device configured to sense an attitude of the nozzle. The attitude sensing device is in fluid communication with the sensing path and includes a ball received in a track. The track includes a generally spherical portion configured to receive the ball therein to generally block the sensing path when the nozzle is raised to a sufficient angle. The spherical portion has a radius generally corresponding to a radius of the ball.
Each dispenser 12 is in fluid communication with a fuel/fluid storage tank 22 via a fluid conduit 26 that extends from each dispenser 12 to the storage tank 22. The storage tank 22 includes or is coupled to a fuel pump 28 which is configured to draw fluid out of the storage tank 22 via a pipe 30. During refilling, as shown by the in-use dispenser 12′ of
In some cases, it is desired to capture vapors expelled from the fuel tank during refilling, and route the vapors to the tank 22. In this case, a vapor path 34 extends from the nozzle 18, through the hose 16 and a vapor conduit 24 to the ullage space of the tank 22. For example, as shown in
It should be understood that the arrangement of pumps 28, 32 and storage tank 22 can be varied from that shown in
As best shown in
When the nozzle body 42 is oriented generally horizontally (i.e. the main fluid path 46 and/or main vapor path 48 are oriented generally horizontally, as shown in
A main fluid valve 60 is positioned in the fluid path 36 to control the flow of liquid therethrough and through the nozzle 18. Similarly, when a vapor recovery path 34 is utilized, a main vapor valve 62 is positioned in the vapor path 34 to control the flow of vapor therethrough and through the nozzle 18. Both the main fluid valve 60 and main vapor valve 62 are carried on, or operatively coupled to, a main valve stem 64. The bottom of the main fluid valve stem 64 is positioned above or operatively coupled to a lever 66 which can be manually raised or actuated by the user. In operation, when the user raises the lever 66 and refilling conditions are appropriate, the lever 66 engages and raises the valve stem 64, thereby opening the main fluid valve 60 and main vapor valve 62.
As best shown in
When the venturi poppet 70 is open and liquid flows between the venturi poppet 70 and the seating ring 74, a venturi effect is created in a plurality of radially-extending passages (not shown) extending through the seating ring 74 and communicating with an annular chamber 76 (
The annular chamber 76 is also in fluid communication with a tube 84 (
When the venturi poppet 70 is open and fluid flows through the fluid path 36, the venturi or negative pressure in the annular chamber 76 and sensing path 88 draws air through the opening 86 and tube 84, thereby dissipating the negative pressure. This venturi effect is described in greater detail in U.S. Pat. No. 3,085,600 to Briede, the entire contents of which are incorporated herein. However, it should be understood that a venturi or negative pressure in the sensing path 88 can be generated by any of a wide variety of mechanisms or devices, and the attitude sensing device disclosed herein is not limited to use with any particular venturi or negative pressure system.
An attitude sensing device, generally designated 90, is positioned in, or in fluid communication with, the sensing path 88. In particular, in the illustrated embodiment, the attitude sensing device 90 is positioned at an upstream end (with respect to the flow of vapors/fluid therethrough) of the tube 84 and in the base portion 56 of the spout 54 adjacent to the venturi poppet 70. Positioning the attitude device 90 in this manner, and away from the tip of the spout 54, protects the attitude sensing device 90 and avoids direct exposure of the attitude sensing device 90 to liquids.
The attitude sensing device 90 includes a spherical ball 92 received on or in a track 94 and freely movable (i.e. by rolling) on the track 94. When the end portion of the nozzle 18 is pointed sufficiently downwardly, the ball 92 generally resides in its retracted, or open, position as shown in
As shown in
During dispensing operations, incoming air in the sensing path 88 (created by the venturi described above) impinges upon the deflector portion 106 and is deflected upwardly and through the restricted orifice 108 before entering a relatively un-restricted area downstream of the deflector portion 106. The fluid dynamics in this area of the sensing path 88, along with the presence of the ball 92, creates eddy currents just upstream of the deflector portion 106/ball 92, as schematically shown by the dotted line path in
The restricted orifice 108 may have a surface area of between about ¼ and about 1/10 of the surface area of the portions of the sensing path 88 located immediately upstream and/or downstream of the restriction 108/shielding plug 102. If the surface area of the restricted orifice 108 is too small, the flow becomes choked. On the other hand, if the surface area of the restricted orifice 108 is too large, the desired eddy currents are not formed. In the illustrated embodiment the gap g defined by the restricted orifice 108 is of relatively small height, such as about 1/16″ in one embodiment, and can vary between about ⅛″ and 1/32″ in this embodiment, or between about ⅓ and about 1/10 of the diameter/height of the sensing path 88.
The track 94 may include various different shapes along its length. In particular, the track 94 may include a first or upstream cylindrical portion 110, which is generally flat or cylindrical, a first or upstream conical portion or ramp 112, a second or downstream conical portion or ramp 114, a second or downstream cylindrical portion 116 and a can, seat or pocket 118. In the illustrated embodiment, the pocket 118 is generally spherical (for the sake of clarity it should be understood that “spherical” as used herein can mean a portion or partial surface of a sphere).
The ball 92 may rest upon the upstream cylindrical portion 110 when the ball 92 is in its retracted position, adjacent to the deflector 106. The upstream conical portion 112 may have a relatively shallow internal angle, such as between about 3° and about 10° (about 7° in the illustrated embodiment), and extend for a relatively short length (i.e. about ⅛ of the length of the downstream conical portion 114 in one case). The downstream conical portion 114 may include a sharper, larger angle, such as between about 10° and about 20° (about 15° in the illustrated embodiment). It is noted that the ramps 112, 114 present an incline to the ball 92 as the ball 92 rolls within the track 94. When the ramps 112, 114 are defined by conical sections, as in the illustrated embodiment, the ramps 112, 114 provide the desired incline regardless of the rotation/orientation of the nozzle 18/attitude device 90. The downstream cylindrical portion 116 is positioned between the downstream conical portion 114 and the spherical pocket 118.
The spherical pocket 118 may have a size and shape generally matching that of the ball 92. For example, in one case the pocket 118 has a radius that is within about 5% of the radius of the ball 92 in one case (within about 10% in another case) to provide the desired suction forces as outlined in greater detail below. However, at least one of the size or shape of the pocket 118 may be at least slightly mis-matched with respect to the ball 92 to ensure that the ball 92 does not become fully seated in the pocket 118 to avoid the ball 92 becoming wedged in the pocket 118.
The angle of the upstream ramp portion 112 may be smaller than the angle C (
In one particular embodiment, the attitude sensing device 90 is configured such that the ball 92 rolls onto the upstream ramp portion 112 once the end portion 58 is raised above horizontal. In another embodiment, the attitude sensing device 90 is configured such that the ball 92 rolls onto the upstream ramp portion 112 once the end portion 58 is below, but approaching, horizontal based upon anticipation that the end portion 58 will continue to be raised, to provide a quick response time.
Once the ball 92 arrives at the upstream ramp portion 112, it should typically have enough momentum and/or gravity forces acting upon it to roll onto the downstream ramp portion 114, as shown in
As the ball 92 continues to move downstream, the upper downstream quadrant of the ball begins to approach, and aerodynamically interact, with the spherical pocket 118. In particular, as shown in
Air is accelerated through the restricted pathway 130, creating a suction force across the upper downstream portion of the ball, thereby rapidly “pulling” the ball 92 into its blocking position. The cylindrical portion 116 extends for a relatively short length but aids in the development of the suction forces over the ball 92. The restricted pathway 130 is generally spherical as the ball 92 approaches the pocket 118. It has been observed that once the ball 92 is positioned on the downstream ramp portion 114, movement of the ball 92 to its blocking position is due almost entirely to the high suction forces created by the restricted pathway 130, and movement of the ball 92 is not necessarily gravity-dependent. It has also been observed that the ball 92 rapidly moves to its blocking position once the ball 92 enters the downstream ramp portion 114, thereby providing a highly-responsive attitude device.
The restricted pathway 130, and the associated suction force, may act upon the face portion f of the ball shown in
Moreover, because of the longer development of the vacuum over the face f, incoming air continues to accelerate over the ball 92, increasing the vacuum and raising the pressure to atmospheric on the downstream side of the ball 92. In addition, as the ball 92 approaches the pocket 118, the restriction 130 creates higher pressures upstream of the ball 92, thereby pushing the ball 92 in place. Thus, as the ball 92 approaches the blocking position, it experiences a push/pull effect which amplifies the response time of the attitude sensing device.
When the ball 92 is in its blocking position (as shown in
The decrease in pressure in the central chamber 80 of the shut-off device 82 causes a lower diaphragm 96 of the valve 82 to be raised, pulling a pin 98 upwardly, thereby enabling an associated plunger 100 to move downwardly. The plunger 100 then moves downwardly, urged by the spring forces of the main fluid valve 60 and main vapor valve 62, causing the lever 66 to move and the main fluid and main vapor valves 60, 62 to close. Thus, sufficiently low pressure in the sensing path 88 (such as blockage created by the ball 92 in combination with the generated venturi) causes the shut-off device 82 to close the main valves 60, 62. This interaction between the pin 98 and the plunger 100 is shown and described in more detail in U.S. Pat. No. 2,582,195 to Duerr, the entire contents of which are incorporated herein by reference. Moreover, the operation of the shut-off device 82 described herein is similar in some respects to that of U.S. Pat. No. 4,453,578 to Wilder, the entire contents of which are hereby incorporated by reference. In this manner, the attitude sensing device 90 provides a safety feature in which the nozzle 18 can only operate when it is pointing in the desired orientation.
It should also be understood that the opening 86 at the end of the spout 54 could be blocked, such as when fluid levels in the tank 40 during refilling reach a sufficiently high level. In this case, the shut-off device 82 will operate in the same manner as outlined above, causing the main valves 60, 62 to close. Thus the sensing path 88 can also be utilized to sense overfill conditions and shut off the nozzle 18 accordingly. Moreover, it should be understood that any of a wide variety of shut-off devices can be utilized, and the attitude sensing device 90 disclosed herein is not limited to use with any specific shut-off device or system.
Once the nozzle 18 is pointed sufficiently downwardly, the ball 92 returns to its retracted position in which the sensing path 88 is not blocked. In this manner, the nozzle 92 is then ready for further dispensing operations as desired.
The ball track 94 may have a transition area 132 (
Thus, the deflector portion 106, in combination with the two-stage ramps 112, 114, the spherical pocket 118 and other features described herein provide consistent, repeatable and precise operation of the attitude sensing device 90. In particular, during operation the eddy currents and the upstream ramp 112 portion help to keep the ball 92 in the retracted position, when appropriate, thereby preventing premature shut-offs of the nozzle 18. In contrast, once the nozzle 18 is raised to a sufficient angle/attitude, the ball 92 overcomes the retaining forces of the eddy currents and/or upstream ramp portion 112. Once the ball 92 enters or approaches the downstream ramp portion 114, the ball 92 rapidly rolls and/or is sucked or pushed to the blocked position, thereby providing precise shut-off control. The spherical design of the pocket 118 provides a constricted pathway 130 about a significant portion of the outer face of the ball 92 to provide the suction forces and benefits described above.
Having described the invention in detail and by reference to the various embodiments, it should be understood that modifications and variations thereof are possible without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
732494 | Allen | Jun 1903 | A |
1998221 | Conklin | Apr 1935 | A |
2582195 | Duerr | Jan 1952 | A |
2874735 | Boone | Feb 1959 | A |
3085600 | Briede | Apr 1963 | A |
3323560 | Ehlers | Jun 1967 | A |
3521679 | Copony | Jul 1970 | A |
4058149 | Hansel | Nov 1977 | A |
4453578 | Wilder | Jun 1984 | A |
4559982 | Fink, Jr. | Dec 1985 | A |
4809753 | Fink, Jr. | Mar 1989 | A |
5325896 | Koch et al. | Jul 1994 | A |
5327944 | Healy | Jul 1994 | A |
5379811 | Dotson et al. | Jan 1995 | A |
5549132 | Butterfield et al. | Aug 1996 | A |
5562133 | Mitchell | Oct 1996 | A |
5687778 | Harris | Nov 1997 | A |
6336479 | Nanaji | Jan 2002 | B1 |
7134580 | Garrison et al. | Nov 2006 | B2 |
Entry |
---|
PCT, International Search Report and Written Opinion, International Application No. PCT/US2011/059848 (Mar. 27, 2012). |
Number | Date | Country | |
---|---|---|---|
20120125478 A1 | May 2012 | US |