Fuel Feedstream Combustion System

Information

  • Patent Application
  • 20180328585
  • Publication Number
    20180328585
  • Date Filed
    July 09, 2018
    6 years ago
  • Date Published
    November 15, 2018
    6 years ago
Abstract
A feedstream combustion device for combusting a fuel feedstream having one or more burners, where each burner comprises a mixer having a first mixer segment and a second mixer segment that mixes a first air intake of a first air feedstream and a fuel feedstream at a first mixer segment inlet end and mixes a second air intake of a second air feedstream with the first air feedstream and fuel feedstream in an annular space between the external surface of the first mixer segment and the internal surface of the second mixer segment.
Description
FIELD OF THE INVENTION

A feedstream combustion device for combusting a fuel feedstream having one or more burners, where each burner comprises a mixer having a first mixer segment and a second mixer segment that mixes a first air feedstream and a fuel feedstream received at a first air intake of at a first mixer segment inlet end and mixes a second air feedstream received at a second air intake defined by an annular space between the external surface of the first mixer segment at the and the internal surface of the second mixer segment with the first air feedstream and fuel feedstream.


II. BACKGROUND OF THE INVENTION

Systems for combusting waste gas may be employed in conjunction with operations collecting fossil fuels, such as mining or drilling, to burn off flammable gas which accumulates alongside fossil fuels in order to prevent pressure buildup of the flammable gas that can damage equipment used to collect fossil fuels. Burning of the flammable gas occurs to convert harmful hydrocarbons and other gases into the safer products of combustion, carbon dioxide and water. To ensure as complete a conversion as possible during combustion, a waste gas combustion system should allow ample mixing of the flammable gas with a source of oxygen, such as air, to promote as complete a combustion as possible.


III. SUMMARY OF THE INVENTION

A broad object of the invention can be to provide a burner for combustion of a fuel feedstream in the operation of a feedstream combustion device comprising a mixer to mix a fuel feedstream and an air feedstream, where the mixer includes a first mixer segment that narrows from the first mixer segment inlet end, where the fuel feedstream and a first air feedstream mix to the first mixer segment outlet end and a second mixer segment that has a second mixer inlet end, where the insertion of the first mixer segment outlet end into the second mixer segment inlet end defines an annular space between the external surface of the first mixer segment and the internal surface of the second mixer segment, where a second air feedstream mixes with the fuel feedstream and the first air feedstream.


Another broad object of the invention is to provide a method for combusting a fuel feedstream in the operation of a feedstream combustion device which comprises mixing a fuel feedstream with a first air feedstream in a first mixer segment, where the first mixer segment narrows from the first mixer segment inlet end, which defines the fuel feedstream intake and first air feedstream intake, to the first mixer segment outlet end, and mixing the fuel feedstream and first air feedstream with a second air feedstream in a second mixer segment, where the first mixer segment outlet end inserted inside of the second mixer inlet end defines an annular space between the external surface of the first mixer segment and the internal surface of the second mixer segment, defining a second air feedstream intake.


Naturally, further objects of the invention are disclosed throughout other areas of the specification, drawings, photographs, and claims.





IV. BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a particular embodiment of a feedstream combustion device.



FIG. 2 is a side view of a particular embodiment of a feedstream combustion device.



FIG. 3 is a front view of a particular embodiment of a feedstream combustion device.



FIG. 4 is an exploded view of a particular embodiment of a feedstream combustion device.



FIG. 5A is a top elevation view of a particular embodiment of a fuel rail.



FIG. 5B is a perspective view of a particular embodiment of a fuel rail.



FIG. 5C is a top view of a particular embodiment of a fuel rail.



FIG. 5D is a side view of a particular embodiment of a fuel rail.



FIG. 6 is a perspective view of a particular embodiment of an array of burners.



FIG. 7 is a side view of a particular embodiment of an array of burners.



FIG. 8 is a side view of a particular embodiment of a burner.



FIG. 9 is a top view of a particular embodiment of an array of burners.



FIG. 10 is a bottom view of a particular embodiment of an array of burners.



FIG. 11 is a cross-sectional view of a particular embodiment of a burner in FIG. 7.



FIG. 12 is another cross-sectional view of a particular embodiment of a burner in FIG. 7.





V. DETAILED DESCRIPTION OF THE INVENTION

Referring generally to FIGS. 1-12, a burner (1) for combustion of a fuel feedstream (2) in the operation of a fuel feedstream combustion device (3) which can include one or more of the following: one or more mixers (4), each configured to mix a fuel feedstream (2) with a first air feedstream (5) and a second air feedstream (6), one or more fuel rails (7), a burner housing (8), and a stack (9). A fuel feedstream combustion device can be used to burn off the fuel feedstream produced or which accumulates during fossil fuel production or reclamation processes, occurring at industrial plants such as petroleum refineries, chemical plants, natural gas processing plants, or oil or gas production sites.


Now referring primarily to FIGS. 4 through 12, the mixer (4) can comprise a first mixer segment (10) having a length disposed between a first mixer segment inlet end (11) and a first mixer segment outlet end (12), and a second mixer segment (13) having a length disposed between a second mixer segment inlet end (14) and a second mixer segment outlet end (15). The first mixer segment (10) can have a first mixer segment internal surface (16) defining a first mixer segment passage (17) between the first mixer segment inlet end (11) and the first mixer segment outlet end (12). The first mixer segment internal surface (16) can define a first mixer segment inlet area (18) at the first mixer segment inlet end (11). The first mixer segment internal surface (16) can further define a first mixer segment outlet area (19) at the first mixer segment outlet end (12).


In particular embodiments, the first mixer segment passage (17) can, but need not necessarily, narrow approaching the first mixer segment outlet end (12), as shown in the examples of FIGS. 8, 11, and 12. The amount the first mixer segment passage (17) narrows from the first mixer segment inlet end (11) to the first mixer segment outlet end (12) can be quantified by comparing the first mixer segment outlet area (19) to the first mixer segment inlet area (18). The comparison between the first mixer segment outlet area (19) and the first mixer segment inlet area (18) can be expressed as a percentage ([(first mixer segment outlet area (19))(cm2)±(first mixer segment inlet area (18))(cm2)]×100). As to particular embodiments the first mixer segment outlet area (19) as compared to the first mixer segment inlet area (18) can be in a range of about 50 percent to about 80 percent. The percentage of narrowing between the first mixer segment inlet end (11) and the first mixer segment outlet end (12) can further be selected from the group including or consisting of: about 55 percent to about 60 percent, about 57.5 percent to about 62.5 percent, about 60 percent to about 65 percent, about 62.5 percent to about 67.5 percent, about 65 percent to about 70 percent, about 67.5 percent to about 72.5 percent, about 70 percent to about 75 percent, about 72.5 percent to about 77.5 percent, and combinations thereof.


In particular embodiments, the configuration of the first mixer segment internal surface (16) at the first mixer segment inlet end (11) can be generally square, rectangular, or other polygonal cross-section; circular, oval, or the like. The first mixer segment internal surface (16) can, but need not necessarily, be inwardly recessed or indented approaching the first mixer segment outlet end (12), which can reduce the cross-sectional area (20) of the first mixer segment passage (17) approaching the first mixer segment outlet end (12) or the first mixer segment outlet area (19) at the first mixer segment outlet end (12)(as shown in the illustrative examples of FIGS. 11 and 12).


Now referring to the illustrative example of FIG. 6, the first mixer segment internal surface (16) at the first mixer segment inlet end (11) can, but need not necessarily, have a plurality of sides (21) joined in a generally square or rectangular configuration. Above the first mixer segment inlet end (11), at least one of the plurality of sides (21) can be inwardly indented approaching the first mixer segment outlet end (12) to narrow or reduce the orthogonal cross sectional area (20) of the first mixer segment passage (17). The generally square or rectangular cross-section above the first mixer segment inlet end (11) can also include a pair of said plurality of sides (21) oppositely inwardly indented approaching the first mixer segment outlet end (12) to narrow or reduce the orthogonal cross sectional area (20) of the first mixer segment passage (17). In particular embodiments, each of the pair of sides (21) can inwardly angle toward a longitudinal midline (22) of a corresponding one of the pair of sides (21), as shown in the illustrative examples of FIGS. 6, 8, 10, 11 and 12.


Now referring primarily to FIGS. 6 through 10, the second mixer segment (13) can have a second mixer segment internal surface (23) defining a second mixer segment passage (24) between a second mixer segment inlet end (14) and a second mixer segment outlet end (15). The first mixer segment outlet end (12) can be insertingly received in the second mixer segment inlet end (14) by insertion of the first mixer segment outlet end (12) inside of the second mixer segment inlet end (14). In the insertingly received configuration, the overlapping portions (25) of the first mixer segment outlet end (12) and the second mixer segment inlet end (14) can define an annular space (26) between the first mixer segment external surface (27) and the second mixer segment internal surface (23), as shown in the example of FIG. 8.


The first mixer segment (10) and second mixer segment (13) can comprise steel, stainless steel, titanium, ceramic, or other material which does not melt, deform, or substantially fatigue when exposed to repeated cycles of normal burner operation at temperatures in the range of about 1000° C. to about 3000° C., or the range of temperatures associated with the combustion of fuel feedstreams (2) extracted from gas or oil wells.


Referring primarily to FIGS. 6 through 8, embodiments of the mixer (4) can include the first mixer segment inlet end (11), which defines both the first mixer segment inlet area (18) and a first air intake (28) for ingress of a fuel feedstream (2) mixed with a first air feedstream (5). Further, the annular space (26) disposed between the first mixer segment external surface (27) and the second mixer segment internal surface (23) defines a second air intake (29) for ingress of a second air feedstream (6). The fuel feedstream (2) and the first air feedstream (5) introduced at the first air intake (28) and passing through a narrowing of the first mixer segment passage (17) can operate to produce a venturi effect to pull a second air feedstream (6) through the second air intake (29). The venturi effect, derived from the principle of continuity and the principle of conservation of mechanical energy, states that the velocity of a fluid passing through a constricted area will increase, and its static pressure will decrease, when the mechanical energy of the fluid remains constant. Thus, as the first mixer segment passage (17) narrows from the first mixer segment inlet end (11) toward the first mixer segment outlet end (12) (the first mixer segment outlet area (19) being constricted relative to the first mixer segment inlet area (18)), the velocity of the fuel feedstream (2) mixed with the first air feedstream (5) will increase approaching the first mixer segment outlet end (12), while the pressure of the fuel feedstream (2) mixed with the first air feedstream (5) will decrease at the first mixer segment outlet end (12). The increased velocity and the reduced pressure of the fuel feedstream (2) mixed with the first air feedstream (5) at the first mixer segment outlet end (12) can cause the second air feedstream (6) to flow into the second air intake (29) which comprises the annular space (26) between the first mixer segment external surface (27) and the second mixer segment internal surface (23).


The fuel feedstream (2) includes combustible compounds (also referred to as “fuel”) which can, but need not necessarily, flow from a gas or oil well, including natural gas which can be a mixture of nitrogen, carbon dioxide, methane, sulfur dioxide, and lesser amounts of other hydrocarbons including ethane, hydrocarbons having more than three carbons, trace amounts of helium and other gases and the associated condensates, or combination thereof. The first and second air feedstreams (5)(6) can, but need not necessarily, be comprised of ambient atmospheric gases (also referred to as “air”) from the surrounding environment, or other fluid containing sufficient oxygen to combust the fuel feedstream (2).


In particular embodiments, the fuel feedstream (2) can be further characterized as having one or more of a fuel feedstream load (30), fuel feedstream pressure (31), and fuel feedstream flow rate (32), each of which can be adjusted to increase combustion efficiency or increase the actual yield of the combustion products. A combustion reaction can be defined as the exothermic reaction of fuel, oxygen, and heat to produce carbon dioxide, water, and heat. To provide heat for the combustion reaction, embodiments can include a pilot light. In some circumstances, the limiting reagent of a combustion reaction can be oxygen, so that an increase in the amount of oxygen available for reaction will also increase the actual yield of the reaction products. The utilization of the second air intake (29) to deliver the second air feedstream (6) to the mixer (4) can increase the amount of oxygen available for combustion of the fuel feedstream (2) by addition of a second amount of oxygen to the first amount of oxygen already contained in the first air feedstream (5) delivered to the first air intake (28). Moreover, the fuel feedstream load (30), fuel feedstream pressure (31), and fuel feedstream flow rate (32) can each be adjusted to increase or decrease the total amount of fuel (34) delivered to the mixer (4) in the fuel feedstream (2) in relation to the oxygen available in the first and second air feedstreams (5)(6) to approximate the stoichiometric coefficients of the combustion reaction, which more closely approximates a theoretical reaction yield of 100%.


The fuel feedstream load (30) can be defined as the amount of fuel in cubic feet delivered per hour per orifice (47) of the burner (1) (as further described below) which yields about 1200 British thermal units to about 3000 British thermal units; although embodiments of the burner (1) can be scalable to lesser or greater fuel feedstream loads (30). The fuel feedstream load (30) can include or be selected from the group consisting of: about 1300 British thermal units to about 1500 British thermal units, about 1400 British thermal units to about 1600 British thermal units, about 1500 British thermal units to about 1700 British thermal units, about 1600 British thermal units to about 1800 British thermal units, about 1700 British thermal units to about 1900 British thermal units, about 1800 British thermal units to about 2000 British thermal units, about 1900 British thermal units to about 2100 British thermal units, about 2000 British thermal units to about 2200 British thermal units, about 2100 British thermal units to about 2300 British thermal units, about 2200 British thermal units to about 2400 British thermal units, about 2300 British thermal units to about 2500 British thermal units, about 2400 British thermal units to about 2600 British thermal units, about 2500 British thermal units to about 2700 British thermal units, about 2600 British thermal units to about 2800 British thermal units, about 2700 British thermal units to about 2900 British thermal units, and combinations thereof.


The fuel feedstream pressure (31) can be defined as the pressure of the fuel feedstream as it passes through an orifice (47) of the burner (1). The fuel feedstream pressure (31) can be less than 0.05 pounds per square inch to about 20 pounds per square inch; although embodiments of the burner (1) can be scalable to lesser or greater fuel feedstream pressure (30). The fuel feedstream pressure (31) can include or can be selected from the group consisting of: about 1.0 pounds per square inch to about 3.0 pounds per square inch, about 2.0 pounds per square inch to about 4.0 pounds per square inch, about 3.0 pounds per square inch to about 5.0 pounds per square inch, about 4.0 pounds per square inch to about 6.0 pounds per square inch, about 5.0 pounds per square inch to about 7.0 pounds per square inch, about 6.0 pounds per square inch to about 8.0 pounds per square inch, about 7.0 pounds per square inch to about 9.0 pounds per square inch, about 8.0 pounds per square inch to about 10.0 pounds per square inch, about 9.0 pounds per square inch to about 11.0 pounds per square inch, about 10.0 pounds per square inch to about 12.0 pounds per square inch, about 11.0 pounds per square inch to about 13.0 pounds per square inch, about 12.0 pounds per square inch to about 15.0 pounds per square inch, about 14.0 pounds per square inch to about 16.0 pounds per square inch, about 15.0 pounds per square inch to about 17.0 pounds per square inch, about 16.0 pounds per square inch to about 18.0 pounds per square inch, about 17.0 pounds per square inch to about 19.0 pounds per square inch, and combinations thereof.


The fuel feedstream flow rate (32) can be defined as the volume of fuel feedstream passing through an orifice (47) of the burner (1) in cubic feet over a period of time. The following tables illustrate a range of the fuel feedstream flow rates that can be achieved for various orifice configurations at various fuel feedstream pressures for particular embodiments. Depending on how many burners and corresponding orifices are employed, the fuel feedstream flow rate (32) can be about near zero cubic feet per hour to about several million cubic feet per day.









TABLE 1







Fuel feedstream flow rate (cubic feet per hour) for a single


orifice of circular configuration having a specific diameter and a


specific fuel feedstream pressure.








Diameter
Pressure (psi)















(In.)
0.0625
0.125
0.1875
0.25
0.375
0.5
0.75
1


















7/64″
27
39
48
55
67
78
96
111


 ⅛″
36
51
62
72
88
102
125
145


9/64″
45
65
79
91
112
130
159
184


3/16″
81
115
141
162
199
230
282
326


 ⅛″
144
204
250
289
353
409
500
579


5/16″
226
319
392
452
554
639
784
905


 ⅜″
324
459
565
649
798
919
1130
1300


 ½″
579
819
1000
1159
1414
1640
2000
2320


 ⅝″
929
1314
1540
1859
2177
2630
3080
3720


 ¾″
1306
1848
2262
2614
3199
3697
4525
5230


 ⅞″
1778
2516
3074
3558
4348
5033
6150
7120
















TABLE 2







Fuel feedstream flow rate (cubic feet per hour) for a single orifice of circular configuration


having a specific diameter and a specified fuel feedstream pressure.








Diameter
Pressure (psi)


















(In.)
0.01388
0.02082
0.02776
0.0347
0.04164
0.04858
0.05552
0.06246
0.0694
0.1041
0.1388





















7/64″
157
192
222
248
271
293
312
332
354
430
496


 ⅛″
205
250
290
325
356
384
410
435
462
526
596


9/64″
262
318
368
412
450
488
520
552
588
714
823


3/16″
460
564
650
728
797
860
920
975
1040
1260
1465


 ⅛″
820
1000
1160
1300
1418
1540
1635
1736
1830
2240
2595


5/16″
1280
1568
1790
2020
2210
2400
2560
2710
2860
3500
4050


 ⅜″
1840
2260
2610
2920
3180
3450
3680
3900
4120
5050
5830


 ½″
3280
4000
4640
5180
5660
6130
6550
6950
7320
8980
10350


 ⅝″
5200
6160
7240
8100
8850
9570
10210
10820
11420
14000
16200


 ¾″
7400
9050
10400
11670
12700
13800
14700
15600
16500
20200
23300


 ⅞″
10000
12300
14200
15850
17300
18750
20000
21300
22500
27500
31800
















TABLE 3







Fuel feedstream flow rate (cubic feet per hour) for a single


orifice of rectangular configuration having a specific length


and width and a specified fuel feedstream pressure.








Diameter
Pressure (psi)















(In.)
0.0625
0.125
0.1875
0.25
0.75
0.5
0.75
1


















1/16″ by ¼″
45
65
79
91
112
130
159
184


  1/16″ by 5/16″
58
82
100
115
141
163
200
231


1/16″ by ⅜″
69
98
120
139
170
197
240
278


  1/16″ by 7/16″
80
114
140
161
198
229
281
325


1/16″ by ½″
91
129
159
182
224
258
313
363


  1/16″ by 9/16″
104
148
181
209
256
296
362
420


1/16″ by ⅝″
114
161
198
228
280
323
397
458


1/16″ by ¾″
138
195
237
276
335
391
475
554


1/16″ by ⅞″
161
228
280
323
396
458
560
648


1/16″ by 1″  
185
262
321
371
454
525
642
743
















TABLE 4







Fuel feedstream flow rate (cubic feet per hour) for a single orifice of rectangular


configuration having a specific length and width and a specified


fuel feedstream pressure.








Diameter
Pressure (psi)


















(In.)
0.01388
0.02082
0.02776
0.0347
0.04164
0.04858
0.05552
0.06246
0.0694
0.1041
0.1388





















1/16″ by ¼″
262
318
368
412
450
488
520
552
588
714
823


  1/16″ by 5/16″
327
400
462
518
564
611
651
691
735
861
894


1/16″ by ⅜″
392
480
555
620
678
734
782
830
885
1075
1240


  1/16″ by 7/16″
459
563
650
727
795
855
915
970
1035
1250
1455


1/16″ by ½″
515
635
734
820
895
970
1035
1100
1160
1420
1643


  1/16″ by 9/16″
583
725
840
940
1025
1113
1185
1260
1325
1628
1880


1/16″ by ⅝″
650
794
925
1034
1133
1229
1307
1390
1461
1791
2073


1/16″ by ¾″
775
950
1195
1233
1340
1457
1547
1641
1741
2127
2457


1/16″ by ⅞″
915
1121
1292
1445
1580
1715
1826
1957
2037
2500
2889


1/16″ by 1″  
1050
1285
1477
1651
1805
1958
2083
2211
2333
2858
3299









Now referring primarily to FIGS. 6, 8, and 9, particular embodiments of the burner (1) for combustion of a fuel feedstream (2) in the operation of a feedstream combustion device (3) can include a flame front velocity stabilizer (35) coupled to the second mixer segment (13) proximate the second mixer segment outlet end (15). The flame front velocity stabilizer (35) can comprise steel, stainless steel, titanium, ceramic, or other material, or combinations thereof, which does not melt, deform, or substantially fatigue when exposed to repeated cycles of normal operation at temperatures in the range of about 1000° C. to about 3000° C., or the range of temperatures associated with the combustion of fuel feedstreams (2) extracted from gas or oil wells. However, the material used in constructing the mixer (4) can withstand different temperature ranges depending on the material being combusted. The coupling of the flame front velocity stabilizer (35) can define an annular space (36) between the external surface of the flame front velocity stabilizer (37) and the second mixer segment internal surface (23) proximate the second mixer segment outlet end (15). The internal surface of the flame front velocity stabilizer (38) can further define a stabilizer passage (39) between opposed flame front velocity stabilizer ends (40). The flame front velocity stabilizer (35) can be located and operated to obstruct the flow path of the mixed feedstream (41) (first, second, or both air feedstreams (5)(6) and fuel feedstream (2)), thereby reducing the velocity of the mixed feedstream (41) to more closely approximate the velocity of the flame front to prevent burn out of the flame (57). Further, the flame front velocity stabilizer (35), located within the second mixer segment passage (24), can further function to generate a recirculation zone (42) to continuously provide the heat (43) for the combustion reaction. The flame front velocity stabilizer (35) can have a tubular configuration as shown in the illustrative examples of FIGS. 5 and 8; however, this is not intended to preclude other configurations of the flame front stabilizer (35) which can also be cylindrical rods, baffles, cones, or “vee” gutters.


Now referring primarily to FIG. 4 and FIGS. 5A through 5D, further particular embodiments of the burner (1) for combustion of a fuel feedstream (2) can include a fuel rail (7). The fuel rail (7) can be comprised of steel, stainless steel, titanium, ceramic, or other material, or combinations thereof, which does not melt, deform, or substantially fatigue when exposed to repeated cycles of normal operation of the burner (1) at temperatures in the range of about 1000° C. to about 3000° C., or the range of temperatures associated with the combustion of fuel feedstreams (2). The fuel rail (7) can have a fuel rail internal surface (44), which defines a fuel feedstream flow path (45) between a fuel rail inlet (46) and a plurality of fuel rail orifices (47) disposed in spaced apart relation between opposed fuel rail ends (48). The fuel rail (7) can be disposed below a plurality of mixers (4) disposed in spaced apart relation to correspondingly align one of the plurality of fuel rail orifices (47) with a corresponding one of the plurality of first mixer segment inlet ends (11). While the example of FIG. 4 shows the fuel rail (7) as having a generally circular cross section, this is not intended to preclude the use of fuel rails (7) having tubular cross sections other than circular such as: rectangular, oval, or other cross sectional configurations. As to particular embodiments, the burner (1) can include a plurality of fuel rails (7) as above described, each delivering a fuel feedstream (2) through a plurality of orifices (47) to a plurality of mixers (4).


Now referring primarily to FIG. 4 and FIGS. 5A through 5D, particular embodiments include a plurality of rail orifices (47), in whole or in part, configured as a plurality of slotted orifices (49). Each of the plurality of slotted orifices (49) can be disposed across the fuel rail longitudinal axis (50) (whether in orthogonal or angulated relation to the fuel rail longitudinal axis (50)). The plurality of slotted orifices (49) can each have a slot length (51)(the linear measure between the first and second slot ends (52)(53) across the fuel rail longitudinal axis (50)) which can be greater than a slot width (54) (the linear measure between first and second slot sides (55)(56)), the slot length (51) and slot width (54) defining an orifice open area (57). As to particular embodiments, the orifice open area (57) can be adjustable to increase or decrease the relationship between the fuel feedstream load (30), fuel feedstream pressure (31), and fuel feedstream flow rate (32). In particular embodiments, the slot width (54) can have a fixed dimension and the slot length (51) can have an adjustable dimension. The slot width (54) can include a fixed dimension of about 1 millimeter (mm) to about 2 mm; although embodiments of the slot can be scaled to lesser or greater dimensions. The slot width (54) can include or be selected from the group consisting of: about 1.1 mm to about 1.4 mm, about 1.3 mm to about 1.5 mm, 1.4 mm to about 1.6 mm, about 1.5 mm to about 1.7 mm, about 1.6 mm to about 1.8 mm, about 1.7 mm to about 1.9 mm, and combinations thereof. The slot length (51) can include a fixed dimension of about 1 millimeter (mm) to about 2 mm. The slot length (51) can be selected from the group consisting of: about 1.1 mm to about 1.4 mm, about 1.3 mm to about 1.5 mm, 1.4 mm to about 1.6 mm, about 1.5 mm to about 1.7 mm, about 1.6 mm to about 1.8 mm, about 1.7 mm to about 1.9 mm, and combinations thereof.


As to other particular embodiments, the plurality of rail orifices (47), in whole or in part, can be configured as a plurality of circular orifices. Each of the plurality of circular orifices can be disposed in spaced apart relation along or across the fuel rail longitudinal axis (50) (whether in orthogonal or angulated relation to the fuel rail longitudinal axis (50)). The plurality of circular orifices can each have a diameter of about 1 millimeter (mm) to about 2 mm; although embodiments of the circular orifice can be scaled to lesser or greater dimensions. The diameter can include or be selected from the group consisting of: about 1.1 mm to about 1.4 mm, about 1.3 mm to about 1.5 mm, 1.4 mm to about 1.6 mm, about 1.5 mm to about 1.7 mm, about 1.6 mm to about 1.8 mm, about 1.7 mm to about 1.9 mm, and combinations thereof.


Now referring primarily to FIGS. 1 through 4, particular embodiments of the burner (1) for combustion of a fuel feedstream (2) can further include a fuel rail manifold (58) which interconnects a plurality of fuel rails (7) disposed below burner array including a plurality of mixers (4) disposed in spaced apart relation above each one of the plurality of fuel rails (7). The fuel rail manifold (58) can divide the fuel feedstream flow path (45) between the plurality of fuel rails (7).


Again, referring primarily to FIGS. 1 through 4, particular embodiments of the burner (1) for combustion of a fuel feedstream (2) can further include a burner housing (8) configured to supportingly enclose one or a plurality of fuel rails (7) below burner array or plurality of mixers (4).


Again, referring primarily FIGS. 1 through 4, particular embodiments of the burner (1) can further include a burner stack (9) connected to the burner housing (8). The burner stack (9) extends upwardly from the burner housing (8) to exhaust the combustion products at a height above the burner (1).


Now referring to FIGS. 1 through 8, particular methods of combusting a fuel feedstream (2) in the operation of a feedstream combustion device (3) can include one or more of the following: mixing the fuel feedstream (2) with a first air feedstream (5) in the first mixer segment (10), where the first mixer segment inlet end (11) defines a first air intake (28) for a fuel feedstream (2) and a first air feedstream (5), mixing the fuel feedstream (2) and the first air feedstream (5) with the second air feedstream (6) in the second mixer segment (13), accelerating the velocity of the fuel feedstream (2) and the first air feedstream (5) between the first mixer segment inlet end (11) and the first mixer segment outlet end (12), generating the second air feedstream (6) at the second air intake (29) utilizing the venturi effect of the fuel feedstream (2) and the first air feedstream (5) at the first mixer segment outlet end (12), and inwardly indenting the first mixer segment internal surface (16) approaching the first mixer segment outlet end (12), which can, but need not necessarily occur in the described order.


Particular embodiments can further include inserting a flame front velocity stabilizer (35) proximate the second mixer segment outlet end (15), and stabilizing a flame front velocity in the second mixer segment (13). Particular methods of combusting a fuel feedstream (2) in the operation of a feedstream combustion device (3) can further include disposing in spaced apart relation a plurality of mixers (4), disposing a fuel rail (7) having a plurality of fuel rail orifices (47) below the plurality of mixers (4); correspondingly aligning each of with plurality of fuel rail orifices (47) each of the plurality of mixers (4), and delivering a fuel feedstream load (30) to the fuel rail (7). The method can further include disposing a plurality of mixers (4) in a plurality of discrete rows, correspondingly disposing each of the plurality of discrete rows including a plurality of mixers (4) to each one of a plurality of fuel rails (7). The method can further include connecting the plurality of fuel rails (7) to a fuel rail manifold (58) and dividing the fuel feedstream (2) between the plurality of fuel rails (7).


Now referring to FIGS. 1 through 3, particular methods of combusting a fuel feedstream (2) in the operation of a feedstream combustion device (3) can include supportingly enclosing the plurality of fuel rails (7) within a burner housing (8). Further particular methods can also, but need not necessarily, include coupling a feedstream combustion device stack (9) to the burner housing (8) above the plurality of mixers (4).


As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. The invention involves numerous and varied embodiments of a fuel feedstream combustion system and methods for making and using such a fuel feedstream combustion system including the best mode.


As such, the particular embodiments or elements of the invention disclosed by the description or shown in the figures or tables accompanying this application are not intended to be limiting, but rather exemplary of the numerous and varied embodiments generically encompassed by the invention or equivalents encompassed with respect to any particular element thereof. In addition, the specific description of a single embodiment or element of the invention may not explicitly describe all embodiments or elements possible; many alternatives are implicitly disclosed by the description and figures.


It should be understood that each element of a feedstream combustion device or each step of a method may be described by a feedstream combustion device term or method term. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all steps of a method may be disclosed as an action, a means for taking that action, or as an element which causes that action. Similarly, each element of a burner may be disclosed as the physical element or the action which that physical element facilitates. As but one example, the disclosure of a “mixer” should be understood to encompass disclosure of the act of “mixing”—whether explicitly discussed or not—and, conversely, were there effectively disclosure of the act of “mixing”, such a disclosure should be understood to encompass disclosure of a “mixer” and even a “means for mixing.” Such alternative terms for each element or step are to be understood to be explicitly included in the description.


In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood to be included in the description for each term as contained in the Random House Webster's Unabridged Dictionary, second edition, each definition hereby incorporated by reference.


All numeric values herein are assumed to be modified by the term “about”, whether or not explicitly indicated. For the purposes of the present invention, ranges may be expressed as from “about” one particular value to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value to the other particular value. The recitation of numerical ranges by endpoints includes all the numeric values subsumed within that range. A numerical range of one to five includes for example the numeric values 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, and so forth. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. When a value is expressed as an approximation by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. The term “about” generally refers to a range of numeric values that one of skill in the art would consider equivalent to the recited numeric value or having the same function or result. Similarly, the antecedent “substantially” means largely, but not wholly, the same form, manner or degree and the particular element will have a range of configurations as a person of ordinary skill in the art would consider as having the same function or result. When a particular element is expressed as an approximation by use of the antecedent “substantially,” it will be understood that the particular element forms another embodiment.


Moreover, for the purposes of the present invention, the term “a” “an” entity refers to one or more of that entity unless otherwise limited. As such, the terms “a” or “an”, “one or more” and “at least one” can be used interchangeably herein.


Thus, the applicant(s) should be understood to claim at least: i) each of the fuel feedstream combustion systems herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative embodiments which accomplish each of the functions shown, disclosed, or described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, x) the various combinations and permutations of each of the previous elements disclosed.


The background section of this patent application provides a statement of the field of endeavor to which the invention pertains. This section may also incorporate or contain paraphrasing of certain United States patents, patent applications, publications, or subject matter of the claimed invention useful in relating information, problems, or concerns about the state of technology to which the invention is drawn toward. It is not intended that any United States patent, patent application, publication, statement or other information cited or incorporated herein be interpreted, construed or deemed to be admitted as prior art with respect to the invention.


The claims set forth in this specification, if any, are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the matter for which protection is sought by this application or by any subsequent application or continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon.


Additionally, the claims set forth in this specification, if any, are further intended to describe the metes and bounds of a limited number of the preferred embodiments of the invention and are not to be construed as the broadest embodiment of the invention or a complete listing of embodiments of the invention that may be claimed. The applicant does not waive any right to develop further claims based upon the description set forth above as a part of any continuation, division, or continuation-in-part, or similar application.

Claims
  • 1-54. (canceled)
  • 55. A burner for combustion of a fuel feedstream, comprising: a mixer which mixes said fuel feedstream with a first and a second air feedstream, said mixer including: a first mixer segment having an internal surface defining a first mixer segment passage between a first mixer segment inlet end and a first mixer segment outlet end, said first mixer segment inlet end defining a first air feedstream intake;a second mixer segment having an internal surface defining a second mixer segment passage between a second mixer segment inlet end and a second mixer segment outlet end, said first mixer segment outlet end inserted inside of said second mixer segment inlet end defining an annular space between said external surface of said first mixer segment and said internal surface of said second mixer segment, said annular space defining a second air feedstream intake.
  • 56. The burner of claim 55, wherein said first mixer segment passage narrowing approaching said first mixer segment outlet end.
  • 57. The burner of claim 56, wherein said internal surface of said first mixer segment inwardly recessed approaching said first mixer segment outlet end to narrow said first mixer segment passage at said first mixer segment outlet end.
  • 58. The burner of claim 57, wherein said internal surface of said first mixer segment inlet end comprises a generally square or rectangular cross section.
  • 59. The burner of claim 58, wherein said generally square or rectangular cross section above said first mixer segment inlet end includes at least one side inwardly recessed approaching said first mixer segment outlet end to narrow said first mixer segment passage.
  • 60. The burner of claim 59, wherein said generally square or rectangular cross section above said first mixer segment inlet end includes a pair of sides oppositely inwardly recessed approaching said first mixer segment outlet end to narrow said first mixer segment passage.
  • 61. The burner of claim 60, wherein each of said pair of sides inwardly angle toward a longitudinal midline of a corresponding one of said pair of sides.
  • 62. The burner of claim 61, wherein said first mixer segment has a first mixer outlet area at said first mixer segment outlet end as compared to said first mixer inlet area at said first mixer segment inlet end of about 50 percent to about 80 percent.
  • 63. The burner of claim 62, wherein said first mixer outlet area at said first mixer segment outlet end as compared to said first mixer inlet area at said first mixer segment inlet end is selected from the group consisting of: about 55 percent to about 65 percent, about 60 percent to about 70 percent, and about 65 percent to about 75 percent.
  • 64. The burner of claim 63, further comprising a flame front velocity stabilizer inserted in said second mixer segment proximate said second mixer segment outlet end defining an annular space between said external surface of said flame front velocity stabilizer and said second mixer segment proximate said second mixer segment outlet end, an internal surface of said flame front velocity stabilizer defining a stabilizer passage between opposed flame front velocity stabilizer ends.
  • 65. The burner of claim 64, wherein said mixer comprises a plurality of mixers disposed in spaced apart relation, said plurality of mixers having a corresponding spaced apart plurality of first mixer segment inlet ends.
  • 66. The burner of claim 65, further comprising a fuel rail having a fuel rail internal surface defining a fuel feedstream flow path between a fuel rail inlet and a plurality of fuel rail orifices disposed in spaced apart relation between opposed fuel rail ends, said fuel rail disposed below said plurality of mixers with said plurality of fuel rail orifices correspondingly aligned with said plurality of first mixer segment inlet ends.
  • 67. The burner of claim 66, wherein said plurality of rail orifices comprise a plurality of slotted orifices.
  • 68. The burner of claim 67, wherein said plurality of slotted orifices have a slot length greater than a slot width defining an orifice open area, said orifice open area adjustable based on feedstream load.
  • 69. The burner of claim 68, wherein said slot width has fixed dimension and said slot length has an adjustable dimension based on a fuel feedstream load.
  • 70. The burner of claim 69, wherein said slot width has a fixed dimension of about 1 millimeter to about 2 millimeters.
  • 71. The burner of claim 70, wherein said slot width is selected from the group consisting of: about 1.1 millimeter to about 1.4 millimeter, about 1.3 millimeter to about 1.5 millimeter, 1.4 millimeter to about 1.6 millimeter, about 1.5 millimeter to about 1.7 millimeter, about 1.6 millimeter to about 1.8 millimeter, about 1.7 millimeter to about 1.9 millimeter.
  • 72. The burner of claim 71, wherein said slot width is about 1.5 millimeters.
  • 73. The burner of claim 72, wherein said fuel rail has a generally circular cross section.
  • 74. The burner of claim 73, wherein said fuel feedstream load comprises about 1200 British thermal units to about 3000 British thermal units.
  • 75. The burner of claim 74, wherein said fuel feedstream load is selected from the group consisting of: about 1300 British thermal units to about 1500 British thermal units, about 1400 British thermal units to about 1600 British thermal units, about 1500 British thermal units to about 1700 British thermal units, about 1600 British thermal units to about 1800 British thermal units, about 1700 British thermal units to about 1900 British thermal units, about 1800 British thermal units to about 2000 British thermal units, about 1900 British thermal units to about 2100 British thermal units, about 2000 British thermal units to about 2200 British thermal units, about 2100 British thermal units to about 2300 British thermal units, about 2200 British thermal units to about 2400 British thermal units, about 2300 British thermal units to about 2500 British thermal units, about 2400 British thermal units to about 2600 British thermal units, about 2500 British thermal units to about 2700 British thermal units, about 2600 British thermal units to about 2800 British thermal units, and about 2700 British thermal units to about 2900 British thermal units.
  • 76. The burner of claim 75, wherein said fuel feedstream has a fuel feedstream pressure of less than 0.05 pounds per square inch to about 20 pounds per square inch.
  • 77. The burner of claim 76, wherein said fuel feedstream pressure is selected from the group consisting of: about 1.0 pounds per square inch to about 3.0 pounds per square inch, about 1.0 pounds per square inch to about 3.0 pounds per square inch, about 2.0 pounds per square inch to about 4.0 pounds per square inch, about 3.0 pounds per square inch to about 5.0 pounds per square inch, about 4.0 pounds per square inch to about 6.0 pounds per square inch, about 5.0 pounds per square inch to about 7.0 pounds per square inch, about 6.0 pounds per square inch to about 8.0 pounds per square inch, about 7.0 pounds per square inch to about 9.0 pounds per square inch, about 8.0 pounds per square inch to about 10.0 pounds per square inch, about 9.0 pounds per square inch to about 11.0 pounds per square inch, about 10.0 pounds per square inch to about 12.0 pounds per square inch, about 11.0 pounds per square inch to about 13.0 pounds per square inch, about 12.0 pounds per square inch to about 15.0 pounds per square inch, about 14.0 pounds per square inch to about 16.0 pounds per square inch, about 15.0 pounds per square inch to about 17.0 pounds per square inch, about 16.0 pounds per square inch to about 18.0 pounds per square inch, and about 17.0 pounds per square inch to about 19.0 pounds per square inch.
  • 78. The burner of claim 77, wherein said fuel feedstream has a fuel feedstream flow rate of about near zero cubic feet per hour to about several million cubic feet per day.
  • 79. The burner of claim 78, further comprising a fuel rail manifold connected to said plurality of fuel rails, said fuel rail manifold divides said fuel feedstream flow path between said plurality of fuel rails.
  • 80. The burner of claim 79, further comprising a burner housing which supportingly encloses said plurality of fuel rails.
  • 81. The burner of claim 80, further comprising a feedstream combustion device coupled to said burner housing above said plurality of mixers.
  • 82. The burner of claim 81, wherein said first mixer segment inlet end defines a fuel feedstream intake.
  • 83-164. (canceled)
Parent Case Info

This United States Non-Provisional patent application claims the benefit of U.S. Provisional Patent Application No. 62/421,943, filed Nov. 14, 2016, hereby incorporated by reference herein.

Provisional Applications (1)
Number Date Country
62421943 Nov 2016 US
Continuations (1)
Number Date Country
Parent 15369995 Dec 2016 US
Child 16030770 US